
Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 1

Copyright  2001 by Karl E. Wiegers version 2

Software
Requirements:

 10 Traps to Avoid
Karl E. Wiegers

www.processimpact.com

Process Impact

Software Requirements: 10 Traps to Avoid 2 Copyright © 2001 by Karl E. Wiegers

Trap #1: Confusion Over “Requirements”

n Stakeholders discuss “requirements” with
no adjectives in front.

n Project sponsor presents a high-level
concept as “the requirements”.

n User interface screens are viewed as
“the requirements”.

n User provides “requirements,” but
developers still don’t know what to build.

n Requirements focus just on functionality.

Symptoms

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 2

Software Requirements: 10 Traps to Avoid 3 Copyright © 2001 by Karl E. Wiegers

Three Levels of Software Requirements

#1: Business
Requirements

Vision and Scope Document

#2: User
Requirements

Use Case Document

#3:Functional
Requirements

Software Requirements Specification

Constraints

Other Nonfunctional
Requirements

System
Requirements

Quality
Attributes

Business
Rules

Software Requirements: 10 Traps to Avoid 4 Copyright © 2001 by Karl E. Wiegers

Trap #1: Confusion Over “Requirements”

n Adopt templates for three levels of requirements.

4 business requirements (Vision & Scope Document)
4 user requirements (Use Case Document)
4 functional requirements (Software Requirements

Specification)

n Distinguish functional from nonfunctional requirements.

4 quality attributes, constraints, external interface
requirements, business rules

n Classify customer input into the different categories.

n Distinguish solution ideas from requirements.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 3

Software Requirements: 10 Traps to Avoid 5 Copyright © 2001 by Karl E. Wiegers

Trap #2: Inadequate Customer Involvement

n Some user classes are overlooked.

n Some user classes don’t have a voice.

n User surrogates attempt to speak for users.

4 user managers
4 marketing
4 developers

n Developers have to make many requirements decisions.

n Customers reject the product when they first see it.

Symptoms

Software Requirements: 10 Traps to Avoid 6 Copyright © 2001 by Karl E. Wiegers

Trap #2: Inadequate Customer Involvement

n Identify your various user classes.

n Identify product champions as user representatives.

n Convene focus groups.

n Identify decision-makers.

n Have users evaluate prototypes.

n Have user representatives review the SRS.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 4

Software Requirements: 10 Traps to Avoid 7 Copyright © 2001 by Karl E. Wiegers

Trap #3: Vague & Ambiguous Requirements

n Readers interpret a requirement in several
different ways.

n Requirements are missing information the
developer needs.

n Requirements are not verifiable.

n Developer has to ask many questions.

n Developer has to guess a lot.

Symptoms

Software Requirements: 10 Traps to Avoid 8 Copyright © 2001 by Karl E. Wiegers

Trap #3: Vague & Ambiguous Requirements

n Formally inspect requirement documents.

n Write conceptual test cases against requirements.

n Model requirements to find knowledge gaps.

n Use prototypes to make requirements more tangible.

n Define terms in a glossary.

n Avoid ambiguous words:

4 minimize, maximize, optimize, rapid, user-friendly, simple,
intuitive, robust, state-of-the-art, improved, efficient,
flexible, several, and/or, etc., include, support

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 5

Software Requirements: 10 Traps to Avoid 9 Copyright © 2001 by Karl E. Wiegers

Trap #4: Unprioritized Requirements

n All requirements are critical!

n Different stakeholders interpret “high”
priority differently.

n After prioritization, 95% are still high.

n Developers don’t want to admit they can’t do it all.

n It’s not clear which requirements to defer during the
“rapid descoping phase.”

Symptoms

L M H

100%

80%

60%

40%

20%

0%

Software Requirements: 10 Traps to Avoid 10 Copyright © 2001 by Karl E. Wiegers

Trap #4: Unprioritized Requirements

n Align functional requirements with business requirements.

n Align functional requirements with high-priority use cases.

4 frequency of use
4 favored user classes
4 core business processes
4 demanded for regulatory compliance

n Define priority categories unambiguously.

n Allocate requirements or features to releases.

n Analytically prioritize discretionary requirements.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 6

Software Requirements: 10 Traps to Avoid 11 Copyright © 2001 by Karl E. Wiegers

Trap #5: Building Functionality No One Uses

n Users demand certain features, then no one uses them.

n Proposed functionality isn’t related to business tasks.

n Developers add functions because “the users will love
this”.

n Customers don’t distinguish “chrome” from “steel”.

Symptoms

Software Requirements: 10 Traps to Avoid 12 Copyright © 2001 by Karl E. Wiegers

Trap #5: Building Functionality No One Uses

n Derive functional requirements from use cases.

n Trace every functional requirement back to its origin.

n Identify user classes who will benefit from each feature.

n Analytically prioritize requirements, use cases, or
features.

4 have customers rate value (benefit and penalty)
4 have developers estimate cost and risk
4 avoid requirements with high cost and low value

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 7

Software Requirements: 10 Traps to Avoid 13 Copyright © 2001 by Karl E. Wiegers

Trap #6: Analysis Paralysis

n Requirements development seems to go on forever.

n New versions of the SRS are continually released.

n Requirements are never baselined.

n All requirements are modeled six ways from Sunday.

n Design and coding can’t start until the SRS is perfect.

Symptoms

Software Requirements: 10 Traps to Avoid 14 Copyright © 2001 by Karl E. Wiegers

Trap #6: Analysis Paralysis

n Remember: the product is software, not an SRS.

n Select an appropriate development life cycle.

4 staged release, evolutionary prototyping, time-boxing

n Decide when requirements are good enough.

4 acceptable risk of proceeding with construction
4 reviewed by analyst, developers, testers, and customers

n Model just the complex or uncertain parts of the system.

n Don’t include final user interface designs in SRS.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 8

Software Requirements: 10 Traps to Avoid 15 Copyright © 2001 by Karl E. Wiegers

Trap #7: Scope Creep

n New requirements are continually added.

4 schedule doesn’t change
4 no more resources provided

n Product scope is never clearly defined.

n Requirement changes sneak in through the back door.

n Proposed requirements come, and go, and come back.

n Scope issues are debated during SRS reviews.

n Sign-off is just a game.

Symptoms

Software Requirements: 10 Traps to Avoid 16 Copyright © 2001 by Karl E. Wiegers

Trap #7: Scope Creep

n Determine root causes of the scope creep.

n Document the product’s vision and scope.

n Define system boundaries and interfaces.

n Follow the change control process for all changes.

n Improve requirements elicitation methods.

n Follow a meaningful baselining process.

n Renegotiate commitments when requirements change.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 9

Software Requirements: 10 Traps to Avoid 17 Copyright © 2001 by Karl E. Wiegers

Trap #8: Inadequate Change Process

n No change process is defined.

n Some people bypass the change process.

4 talk to buddies on the inside
4 implement rejected changes
4 work is done on proposed changes before they’re approved

n New functionality becomes evident during testing.

n Unclear change request status.

n Changes aren’t communicated to all those affected.

n It’s not clear who makes change decisions.

Symptoms

Software Requirements: 10 Traps to Avoid 18 Copyright © 2001 by Karl E. Wiegers

Trap #8: Inadequate Change Process

n Define a practical change control process.

n Set up a Change Control Board.

4 diverse group
4 makes binding change decisions

n Use a tool to collect, track, and communicate changes.

4 problem or issue tracking tools work well
4 a tool is not a process!

n Establish and enforce change control policies.

n Compare priorities against remaining requirements.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 10

Software Requirements: 10 Traps to Avoid 19 Copyright © 2001 by Karl E. Wiegers

Trap #9: Insufficient Change Impact Analysis

n People agree to make changes hastily.

n Change is more complex than anticipated.

n Change takes longer than promised.

n Change isn’t technically feasible.

n Change causes project to slip.

n Developers keep finding more system
components affected by the change.

Symptoms

Software Requirements: 10 Traps to Avoid 20 Copyright © 2001 by Karl E. Wiegers

Trap #9: Insufficient Change Impact Analysis

n Systematically analyze the impact of each proposed
change.

4 identify all possible tasks
4 consider other implications of accepting the change
4 estimate effort and schedule impact

n Use requirements traceability information.

4 identify all affected system components

n Estimate costs and benefits before making commitments.

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 11

Software Requirements: 10 Traps to Avoid 21 Copyright © 2001 by Karl E. Wiegers

Trap #10: Inadequate Version Control

n Accepted changes aren’t incorporated into SRS.

n You can’t distinguish different SRS versions.

4 different versions have the same date
4 identical documents have different dates

n People work from different SRS versions.

4 implement canceled features
4 test against the wrong requirements

n Change history and earlier document versions are lost.

Symptoms

Software Requirements: 10 Traps to Avoid 22 Copyright © 2001 by Karl E. Wiegers

Trap #10: Inadequate Version Control

n Merge changes into the SRS.

n Adopt a versioning scheme for documents.

n Place requirements documents under version control.

4 restrict read/write access
4 make current versions available read-only to all

n Communicate revisions to all who are affected.

n Use a requirements management tool.

4 record complete history of every requirement change.
4 SRS becomes a report from the database

Solutions

Software Requirements: 10 Traps to Avoid Copyright  2001 by Karl E. Wiegers Page 12

Software Requirements: 10 Traps to Avoid 23 Copyright © 2001 by Karl E. Wiegers

Keys to Excellent Software Requirements

n Educated developers, managers, and customers

n A collaborative customer-developer partnership

n Understanding different kinds of requirements

n Iterative, incremental requirements development

n Standard requirements document templates

n Formal and informal requirements reviews

n Writing test cases against requirements

n Analytical requirements prioritization

n Practical, effective change management

Software Requirements: 10 Traps to Avoid 24 Copyright © 2001 by Karl E. Wiegers

Requirements References

Carnegie Mellon University/Software Engineering Institute. The Capability Maturity Model:
Guidelines for Improving the Software Process. Reading, Mass.: Addison-Wesley, 1995.

Davis, Alan M. Software Requirements: Objects, Functions, and States. Englewood Cliffs,
N.J.: PTR Prentice-Hall, 1993.

Gause, Donald C., and Gerald M. Weinberg. Exploring Requirements: Quality Before Design.
New York: Dorset House Publishing, 1989.

IEEE Std. 830-1998, "Recommended Practice for Software Requirements Specifications." Los
Alamitos, Ca.: IEEE Computer Society Press, 1998.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements. Reading, Mass.:
Addison Wesley Longman, 2000.

Sommerville, Ian, and Pete Sawyer. Requirements Engineering: A Good Practice Guide. New
York: John Wiley & Sons, 1997.

Wiegers, Karl E. Creating a Software Engineering Culture. New York: Dorset House
Publishing, 1996.

Wiegers, Karl E. Software Requirements. Redmond, Wash.: Microsoft Press, 1999.

