Software
Requirements:
10 Traps to Avold

Karl E. Wiegers
Process Impact .,
W www.processimpact.co?r\l

Copyright & 2001 by Karl E. Wiegers version 2

Trap #1: Confusion Over “Requirements”

Symptoms

B Stakeholders discuss “requirements” with o
no adjectives in front.

B Project sponsor presents a high-level
concept as “the requirements”.

B User interface screens are viewed as
“the requirements”.

B User provides “requirements,” but
developers still don’t know what to build.

B Requirements focus just on functionality.

Software Requirements: 10 Traps to Avoid 2 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid

Copyright & 2001 by Karl E. Wiegers

Page 1



Three Levels of Software Requirements

#1: Business
Requirements
Vision and Scope Document
#2: User
Requirements

Use Case Document

System \
Requirements
#3:Functiona
Requirements
Business

Software Requirements Specification
Software Requirements: 10 Traps to Avoid 3 Copyright © 2001 by Karl E. Wiegers

| Quality
Attributes

Other Nonfunctional
Requirements

Trap #1: Confusion Over “Requirements”

Solutions

B Adopt templates for three levels of requirements.

v business requirements (Vision & Scope Document)
v user requirements (Use Case Document)

v functional requirements (Software Requirements
Specification)

B Distinguish functional from nonfunctional requirements.

v quality attributes, constraints, external interface
requirements, business rules

B Classify customer input into the different categories.

B Distinguish solution ideas from requirements.

Software Requirements: 10 Traps to Avoid 4 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 2



Trap #2: Inadequate Customer Involvement

Symptoms
B Some user classes are overlooked.

B Some user classes don't have a voice.

B User surrogates attempt to speak for users.

v user managers
v marketing
v developers

B Developers have to make many requirements decisions.

B Customers reject the product when they first see it.

Software Requirements: 10 Traps to Avoid 5 Copyright © 2001 by Karl E. Wiegers

Trap #2: Inadequate Customer Involvement

Solutions

B Identify your various user classes.

B Identify product champions as user representatives.
B Convene focus groups.

B Identify decision-makers.

B Have users evaluate prototypes.

B Have user representatives review the SRS.

Software Requirements: 10 Traps to Avoid 6 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 3



Trap #3: Vague & Ambiguous Requirements

Symptoms

B Readers interpret a requirement in several
different ways.

B Requirements are missing information the
developer needs.

B Requirements are not verifiable.

Developer has to ask many questions.

B Developer has to guess a lot.

Software Requirements: 10 Traps to Avoid 7 Copyright © 2001 by Karl E. Wiegers

Trap #3: Vague & Ambiguous Requirements

Solutions

B Formally inspect requirement documents.

B Write conceptual test cases against requirements.

B Model requirements to find knowledge gaps.

B Use prototypes to make requirements more tangible.
B Define terms in a glossary.

B Avoid ambiguous words:
v minimize, maximize, optimize, rapid, user-friendly, simple,
intuitive, robust, state-of-the-art, improved, efficient,
flexible, several, and/or, etc., include, support

Software Requirements: 10 Traps to Avoid 8 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 4



Trap #4: Unprioritized Requirements
100%
m m
Symptoms 8004
B All requirements are critical! 60%
40%
B Different stakeholders interpret “high” Oo
priority differently. 20%
L B 0%
B After prioritization, 95% are still high. L M H
B Developers don’t want to admit they can’t do it all.
B It's not clear which requirements to defer during the
“rapid descoping phase.”
Software Requirements: 10 Traps to Avoid 9 Copyright © 2001 by Karl E. Wiegers

Trap #4: Unprioritized Requirements

Solutions
B Align functional requirements with business requirements.

B Align functional requirements with high-priority use cases.

v frequency of use

v/ favored user classes

v/ core business processes

v demanded for regulatory compliance

B Define priority categories unambiguously.
B Allocate requirements or features to releases.

B Analytically prioritize discretionary requirements.

Software Requirements: 10 Traps to Avoid 10 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers

Page 5



Trap #5: Building Functionality No One Uses

Symptoms
B Users demand certain features, then no one uses them.
B Proposed functionality isn’t related to business tasks.

B Developers add functions because “the users will love
this”.

B Customers don't distinguish “chrome” from “steel”.

Software Requirements: 10 Traps to Avoid 11 Copyright © 2001 by Karl E. Wiegers

Trap #5: Building Functionality No One Uses

Solutions

B Derive functional requirements from use cases.

B Trace every functional requirement back to its origin.

B Identify user classes who will benefit from each feature.
|

Analytically prioritize requirements, use cases, or
features.

v have customers rate value (benefit and penalty)

v have developers estimate cost and risk

v avoid requirements with high cost and low value

Software Requirements: 10 Traps to Avoid 12 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 6



Trap #6: Analysis Paralysis

Symptoms

B Requirements development seems to go on forever.
B New versions of the SRS are continually released.

B Requirements are never baselined.

B All requirements are modeled six ways from Sunday.

B Design and coding can't start until the SRS is perfect.

Software Requirements: 10 Traps to Avoid 13 Copyright © 2001 by Karl E. Wiegers

Trap #6: Analysis Paralysis

Solutions
B Remember: the product is software, not an SRS.
B Select an appropriate development life cycle.
v/ staged release, evolutionary prototyping, time-boxing

B Decide when requirements are good enough.

v acceptable risk of proceeding with construction
v reviewed by analyst, developers, testers, and customers

B Model just the complex or uncertain parts of the system.

B Don't include final user interface designs in SRS.

Software Requirements: 10 Traps to Avoid 14 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 7



Trap #7. Scope Creep

Symptoms
B New requirements are continually added.

v schedule doesn't change
v no more resources provided

Product scope is never clearly defined.
Requirement changes sneak in through the back door.
Proposed requirements come, and go, and come back.

Scope issues are debated during SRS reviews.

Sign-off is just a game.

Software Requirements: 10 Traps to Avoid 15 Copyright © 2001 by Karl E. Wiegers

Trap #7: Scope Creep

Solutions

Determine root causes of the scope creep.
Document the product’s vision and scope.

Define system boundaries and interfaces.

Follow the change control process for all changes.
Improve requirements elicitation methods.

Follow a meaningful baselining process.

Renegotiate commitments when requirements change.

Software Requirements: 10 Traps to Avoid 16 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers

Page 8



Trap #8: Inadequate Change Process

Symptoms
B No change process is defined.

B Some people bypass the change process.

v talk to buddies on the inside
v implement rejected changes
v work is done on proposed changes before they're approved

New functionality becomes evident during testing.

Unclear change request status.

Changes aren’t communicated to all those affected.

B It's not clear who makes change decisions.

Software Requirements: 10 Traps to Avoid 17 Copyright © 2001 by Karl E. Wiegers

Trap #8: Inadequate Change Process

Solutions
B Define a practical change control process.

B Set up a Change Control Board.

v diverse group
v makes binding change decisions

B Use atool to collect, track, and communicate changes.

v problem or issue tracking tools work well
v atool is not a process!

B Establish and enforce change control policies.

B Compare priorities against remaining requirements.

Software Requirements: 10 Traps to Avoid 18 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 9



Trap #9: Insufficient Change Impact Analysis

Symptoms
People agree to make changes hastily.
Change is more complex than anticipated.

Change takes longer than promised.

Change isn’t technically feasible.

Change causes project to slip.

Developers keep finding more system
components affected by the change.

Software Requirements: 10 Traps to Avoid 19 Copyright © 2001 by Karl E. Wiegers

Trap #9: Insufficient Change Impact Analysis

Solutions
B Systematically analyze the impact of each proposed
change.

v identify all possible tasks
v consider other implications of accepting the change
v/ estimate effort and schedule impact

B Use requirements traceability information.
v identify all affected system components

B Estimate costs and benefits before making commitments.

Software Requirements: 10 Traps to Avoid 20 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 10



Trap #10: Inadequate Version Control

Symptoms
B Accepted changes aren’t incorporated into SRS. ?

B You can't distinguish different SRS versions.

v different versions have the same date
v identical documents have different dates

B People work from different SRS versions.

v implement canceled features
v/ test against the wrong requirements

B Change history and earlier document versions are lost.

Software Requirements: 10 Traps to Avoid 21 Copyright © 2001 by Karl E. Wiegers

Trap #10: Inadequate Version Control

Solutions
B Merge changes into the SRS.
B Adopt a versioning scheme for documents.

B Place requirements documents under version control.

v restrict read/write access
v make current versions available read-only to all

B Communicate revisions to all who are affected.

B Use a requirements management tool.

v record complete history of every requirement change.
v SRS becomes a report from the database

Software Requirements: 10 Traps to Avoid 22 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 11



Keys to Excellent Software Requirements

Educated developers, managers, and customers

A collaborative customer-developer partnership

Understanding different kinds of requirements
Iterative, incremental requirements development
Standard requirements document templates

Formal and informal requirements reviews

Writing test cases against requirements

Analytical requirements prioritization

Practical, effective change management

Software Requirements: 10 Traps to Avoid 23 Copyright © 2001 by Karl E. Wiegers

Requirements References

Carnegie Mellon University/Software Engineering Institute. The Capability Maturity Model:
Guidelines for Improving the Software Process. Reading, Mass.: Addison-Wesley, 1995.

Davis, Alan M. Software Requirements: Objects, Functions, and States. Englewood Cliffs,
N.J.: PTR Prentice-Hall, 1993.

Gause, Donald C., and Gerald M. Weinberg. Exploring Requirements: Quality Before Design.
New York: Dorset House Publishing, 1989.

IEEE Std. 830-1998, "Recommended Practice for Software Requirements Specifications." Los
Alamitos, Ca.: IEEE Computer Society Press, 1998.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements. Reading, Mass.:
Addison Wesley Longman, 2000.

Sommerville, lan, and Pete Sawyer. Requirements Engineering: A Good Practice Guide. New
York: John Wiley & Sons, 1997.

Wiegers, Karl E. Creating a Software Engineering Culture. New York: Dorset House
Publishing, 1996.

Wiegers, Karl E. Software Requirements. Redmond, Wash.: Microsoft Press, 1999.

Software Requirements: 10 Traps to Avoid 24 Copyright © 2001 by Karl E. Wiegers

Software Requirements: 10 Traps to Avoid Copyright & 2001 by Karl E. Wiegers Page 12



