#### Chapter 13 – Software Project Management

Software Engineering

# Software Project Management process

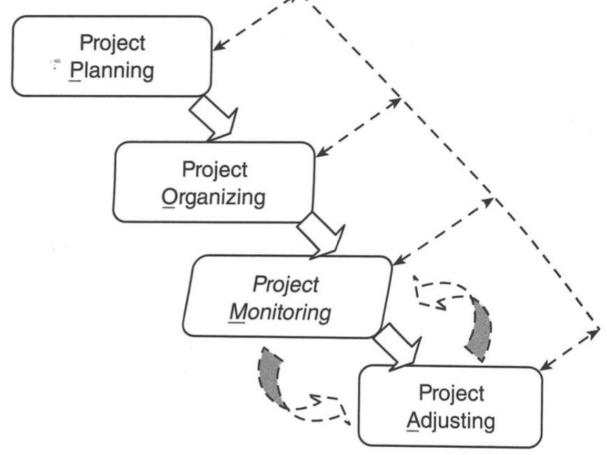



Figure 13.1 Software project management process.

#### Project Management Goals

- End results satisfy customer's needs
- Product attributes (quality, security, productivity, cost, etc.) are met
- Intermediate milestones are met
- Team members are effective with high morale
- Tools and other resources available and effectively utilized

#### Stage 1: Planning - Questions

The following needs to be determined during the planning stage:

- Nature of project, sponsors and users
- Needed and desired requirements
- Deliverables
- Constraints (schedule, cost, etc.)

• Risks

# Planning

The following need to be determined:

- Requirements are accurately understood and specified
- Work effort, schedule and needed resources are estimated
- Measurable goals are defined and established
- Allocations of people, process, tools and facilities are determined
- Risks are identified and analyzed

# **Risk Analysis**

- 3 major components to risk analysis are risk:
- identification
- prioritization
- mitigation plans

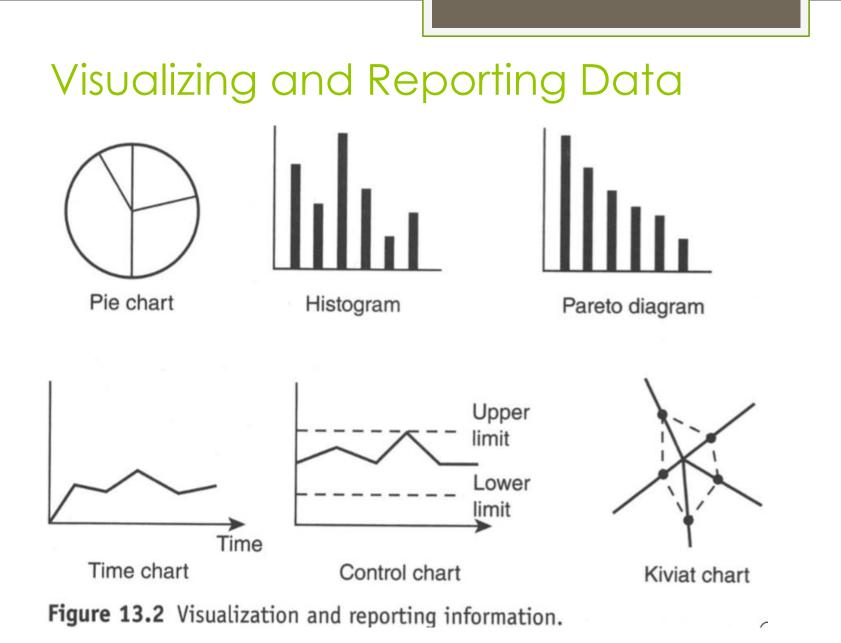
# Included in Plan

Plan includes:

- Brief description of requirements and deliverables
- Work effort estimation explained and shown in detail
- Needed resources people, tools, methodologies & facilities
- Schedule major and minor resources
- Project goals including multiple project attributes
- Assumptions and risks major and minor

# SMART Project Goals

Project goals need to be SMART Specific Measurable Attainable Relevant Time-bound


#### Stage 2: Organizing

#### Table 13.1 Pairing Planning and Organizing Activities

| Planning                         | Organizing                                                                 |  |  |
|----------------------------------|----------------------------------------------------------------------------|--|--|
| Project content and deliverables |                                                                            |  |  |
| Project tasks and schedule       | Set up tracking mechanisms of tasks and schedules.                         |  |  |
| Project resources                | Acquire, hire, and prepare resources such as people, tools, and processes. |  |  |
| Project goals and measurement    | Establish mechanism to measure and track the goals.                        |  |  |
| Project risks                    | Establish mechanism to list, track, and assign risk mitigation tasks.      |  |  |

# Stage 3: Monitoring

3 components of monitoring:
• Collecting project information
• Analysis and evaluation of data
• Presentation and communication



# Stage 4: Adjusting

Items that can be adjusted:

- Resources
- Schedule
- Project content

(Notice that quality is NOT on the list)

# **Coordination Efforts**

Recall back in Chapter 2 engineering projects involves coordination of :

Process People

Product

Kind of relates to items that can be adjusted:

- Resources
- Schedule
- Project content

Good Cheap Quick Good Cheap Quick

Pick any 2...

## Project Management Techniques

Techniques discussed:

- 1. Project effort estimation
- 2. Work breakdown structure
- 3. Project status tracking with earned value
- 4. Developing measurements and metrics

# Project Effort Estimation

Project effort estimation:

Units of effort = a + b(size)<sup>c</sup> + ACCUM(factors)

Unit can be person month, person days, person hours a – base cost b – scale size – KLOC, function points, object points c – allows amount increase to be non-linear ACCUM – sum Factors – technical, personnel, tools, process

#### AbOut Refactor Effort Estimation

Units of effort = a + b(size)c + ACCUM(factors)

Effort AbOut refactor =  $45 \text{ days}^{*}\text{n students} + 300 (3)^{1} + (2^{*}\text{n} + 10 + 10)$ 

Unit – person hours Base cost - 45 class days \* number of students KLOC - Current AbOut 2,000 LOC

Factors : Test driven development – 2\*n GitLab – n Documentation – n

## Constructive Cost Model (COCOMO)

COCOMO has 3 models: macro, intermediate and micro

Discussion is only on intermediate models.

Intermediate models have 3 modes: organic – simple Semidetached – intermediate Embedded – difficult

# СОСОМО

Steps for COCOMO:

- 1. Pick the mode that best reflects the project by considering 8 factors (see next slide)
- 2. Estimate size of project (KLOC- 1,000 lines of code)
- 3. Review 15 factors (see later slide), cost drivers, to determine impact
- 4. Determine effort via formula

# COCOMO: Determine Mode of Project

8 factors to determine mode of project

- 1. Team's understanding
- 2. Team's experience
- 3. Need to conform with requirements
- 4. Need to conform with external interfaces
- 5. Need to develop concurrently with new systems
- 6. New and innovative technology, architecture
- 7. Need to meet or beat schedule
- 8. Project size

## COCOMO: Determine Mode of Project - AbOut Refactor

8 factors to determine mode of project

- 1. Team's understanding medium
- 2. Team's experience low
- 3. Need to conform with requirements low
- 4. Need to conform with external interfaces low
- Need to develop concurrently with new systems low
- 6. New and innovative technology, architecture high
- 7. Need to meet or beat schedule low
- 8. Project size- low

Estimate that mode of AbOut Refactor is organic

## Effort Estimations

Organic: Semidetached: Embedded: Effort =  $[3.2 \times (size)^{1.05}] \times PROD(f's)$ Effort =  $[3.0 \times (size)^{1.12}] \times PROD(f's)$ Effort =  $[2.0 \times (size)^{1.20}] \times PROD(f's)$  15 Cost Drivers

- Product attributes
  - 1. Required software reliability
  - 2. Database size
  - 3. Product complexity
- Computer attributes
  - 4. Execution time constraint
  - 5. Main memory constraint
  - 6. Virtual machine complexity
  - 7. Computer turnaround time
- Personnel attributes
  - 8. Analyst capability
  - 9. Applications experience
  - 10. Programmer capability
  - 11. Virtual machine experience
  - 12. Programming language experience
- Project attributes
  - 13. Use of modern practice
  - 14. Use of software tools
  - 15. Required development schedule

# Cost Drivers Values

#### Table 13.2 COCOMO Cost-Driver Values

| Cost-Drivers | Very Low | Low  | Nominal | High | Very High | Extra High      |
|--------------|----------|------|---------|------|-----------|-----------------|
| 1            | 0.75     | 0.98 | 1.0     | 1.15 | 1.40      | —               |
| 2            |          | 0.94 | 1.0     | 1.08 | 1.16      |                 |
| 3            | 0.70     | 0.85 | 1.0     | 1.15 | 1.30      | _               |
| 4            |          |      | 1.0     | 1.11 | 1.30      | 1.65            |
| 5            |          |      | 1.0     | 1.06 | 1.21      | 1.66            |
| 6            |          | 0.87 | 1.0     | 1.15 | 1.30      | 1.56            |
| 7            |          | 0.87 | 1.0     | 1.07 | 1.15      |                 |
| 8            | 1.46     | 1.19 | 1.0     | 0.86 | 0.71      | Alexandress was |
| 9            | 1.29     | 1.13 | 1.0     | 0.91 | 0.82      | —               |
| 10           | 1.42     | 1.17 | 1.0     | 0.86 | 0.70      | 10              |
| 11           | 1.21     | 1.10 | 1.0     | 0.90 | —         | —               |
| 12           | 1.14     | 1.07 | 1.0     | 0.95 |           | est-shitte      |
| 13           | 1.24     | 1.10 | 1.0     | 0.91 | 0.82      |                 |
| 14           | 1.24     | 1.10 | 1.0     | 0.91 | 0.83      | -               |
| 15           | 1.23     | 1.19 | 1.0     | 1.04 | 1.10      | —               |

# **Function Points**

Function points are a suggested improvement over LOC

Consider

- 1. External inputs
- 2. External outputs
- 3. External inquires
- 4. Internal logical files
- 5. External interface files

# Function Point Weights

Determine if function is simple, average or complex and use weights

#### Table 13.3 Function Point Weights

| Software Components      | Simple | Average | Complex |
|--------------------------|--------|---------|---------|
| External inputs          | 3      | 4       | 6       |
| External outputs         | 4      | 5       | 7       |
| External inquiries       | 3      | 4       | 6       |
| Internal logical files   | 7      | 10      | 15      |
| External interface files | 5      | 7       | 10      |

International Function Point users Group (IFPUG)

#### **Function Points**

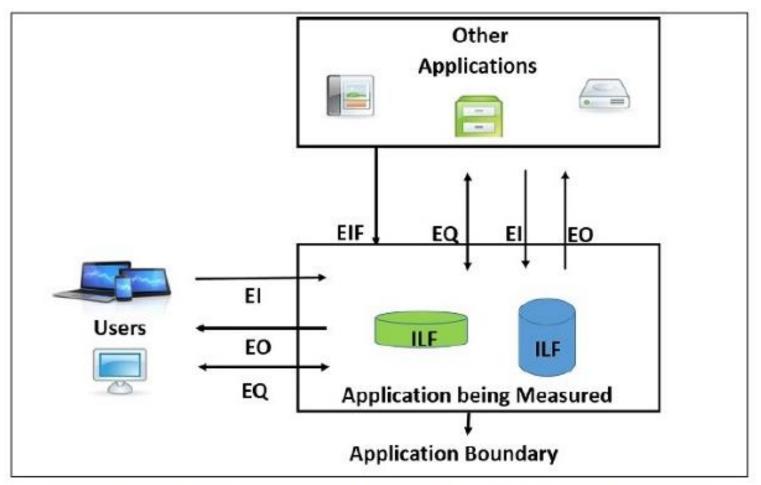



Figure 1: Application Boundary, Data Functions, Transaction Functions

# Function Point Counting

Counting function points:

- Classify software items into transactions and data entities (get transactions from functional decomposition diagrams or data flow diagrams, data entities from ERD)
- Classify transactions into external inputs, outputs and queries
- Classify data entities into external and internal entities
- Rate complexity of components (El, EO, ...) into low, medium and high and use a table of weights to find the unadjusted count
- Adjust the count based on 14 factors, each rated on a scale from 0 to 5

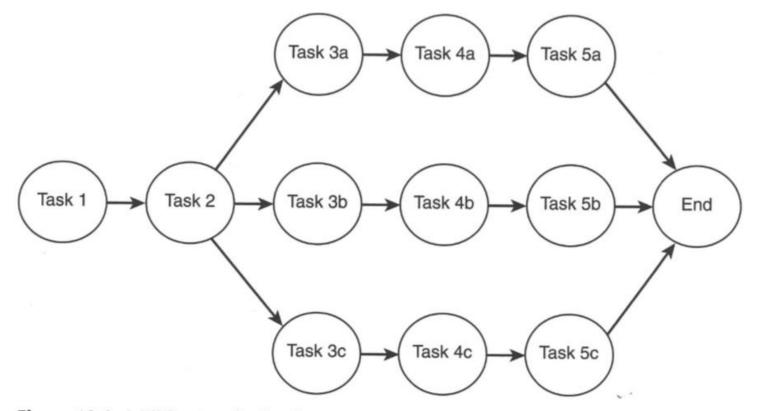
# Weights to Calculate the Unadjusted Function Point

| FUNCTION UNITS | LOW | AVG | HIGH |
|----------------|-----|-----|------|
| EI             | 3   | 4   | 6    |
| EO             | 4   | 5   | 7    |
| EQ             | 3   | 4   | 6    |
| ILF            | 7   | 10  | 15   |
| EIF            | 5   | 7   | 10   |

Multiply each individual function point to corresponding values in TABLE.

# Factors to Adjust Function Point Count

- 1. Data Communication
- Distributed data processing
- Performance
- Heavily used configuration
- 5. Transaction rate
- Online data entry
- 7. End user efficiency
- 8. Online update
- 9. Complex processing
- 10. Reusability
- 11. Installation ease
- 12. Operational ease
- 13. Multiple sites
- 14. Facilitate change


#### Function Points Versus Story Points

Function points are standardized and good for estimating effort from a user's perspective

Story points are a team's agreed amount of effort to do some work, it is local to the project

Beneficial to use both

# Work Breakdown Structure





#### WBS with Time Units

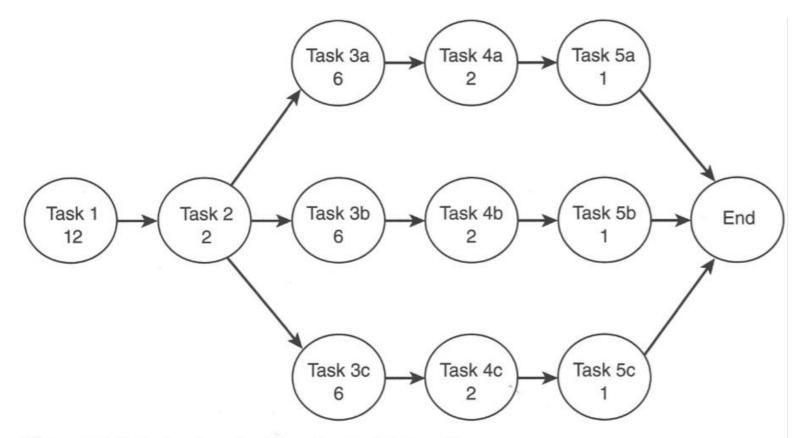



Figure 13.4 Task network with estimated time units.

#### Schedule Estimate

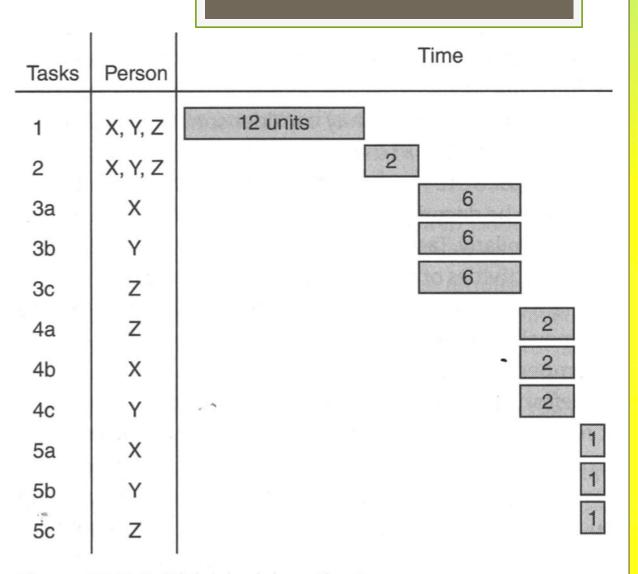



Figure 13.5 Initial schedule estimate.

# Earned Value Example

| Table 13.4 Earned Value | Example | Date: 4/5/2012 |
|-------------------------|---------|----------------|
|-------------------------|---------|----------------|

| Work Tasks | Estimated Effort<br>in Pers-days | Actual Effort Spent<br>So Far in Pers-days | Estimated<br>Completion Date | Actual<br>Completion Date |
|------------|----------------------------------|--------------------------------------------|------------------------------|---------------------------|
| 1          | 10                               | 10                                         | 2/5/2012                     | 2/5/2012                  |
| 2          | 15                               | 25                                         | 3/15/2012                    | 3/25/2012                 |
| 3          | 30                               | 15                                         | 4/25/2012                    |                           |
| 4          | 25                               | 20                                         | 5/5/2012                     | 4/1/2012                  |
| 5          | 15                               | 5                                          | 5/25/2012                    |                           |
| 6          | 20                               | 15                                         | 6/10/2012                    |                           |