Logging Data on a Hockey Puck

Adapted from our Preliminary Design Review

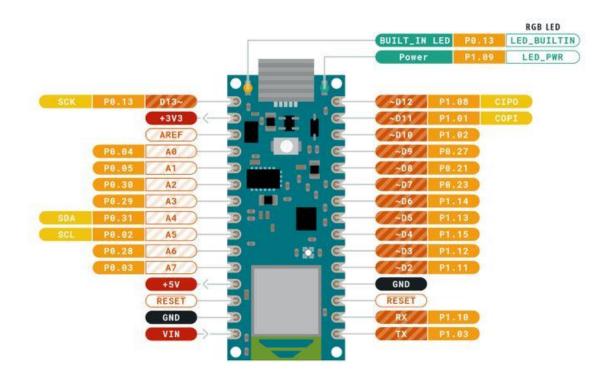
Seth Bettwieser

Contents

- Overview
- Parts:
 - Microcontroller
 - Storage
 - Battery
- Model
- Testing Physical Properties
- Simulations
- Applying Results
- Software:
 - Puck
 - GUI
 - Data Files

Overview

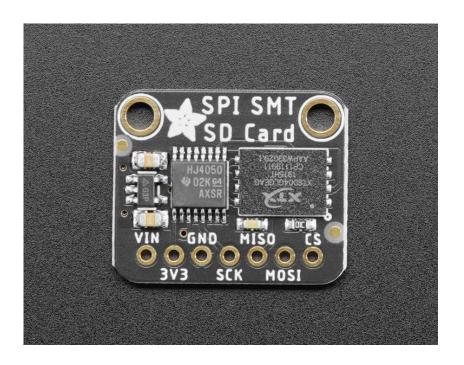
Design a hockey puck-sized data logging module:


- Capable of data logging for accelerometer, gyroscope, and magnetometer
 - Storage on board
 - Power on board
 - Able to extract data
- Resistant to impact
- Applicable to any object of roughly the same size
- With a GUI that runs on the user's computer to convert the data to a usable format

Microcontroller

Specifications:

- 14 Digital I/O pins
- 8 Analog pins
- 5 PWM pins
- Onboard BLE
- 9-axis IMU
- 3.3 V circuit operation voltage
- 64 MHz clock speed



Storage

Memory storage:

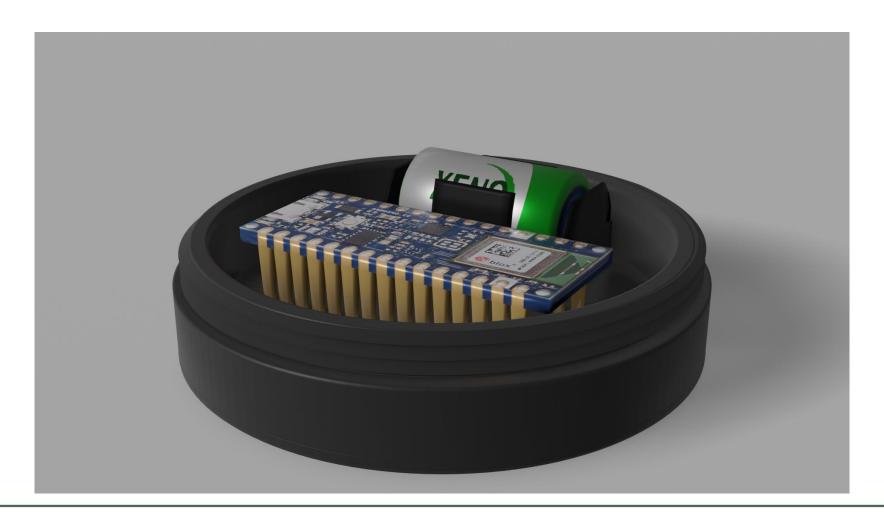
SMT SD Card:

- 512 Mbyte storage
- 3V or 5V
- 50 MHz clock

Battery

Power Supply:

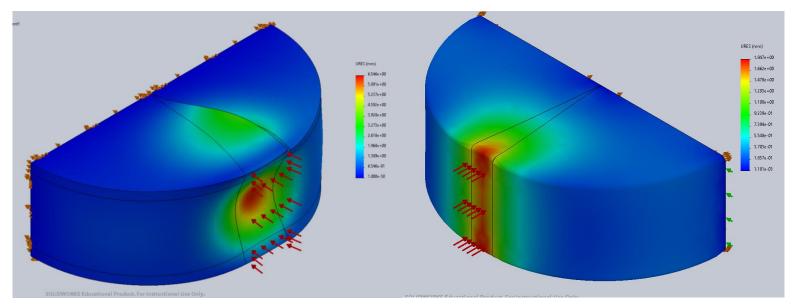
Xeno XLP-050F 1/2AA Lithium Thionyl Chloride battery


- 1200mAh
- 3.6V

Model

Testing Puck's Physical Properties

Tests Conducted


- Stiffness test
 - Measured puck deformation relative to a steady force
 - Achieves a stiffness constant for puck

Possible Future tests

- Coefficient of restitution
 - Compares initial drop height to rebound height
- Physical impact study
 - Use a system to measure velocities before and after impact.

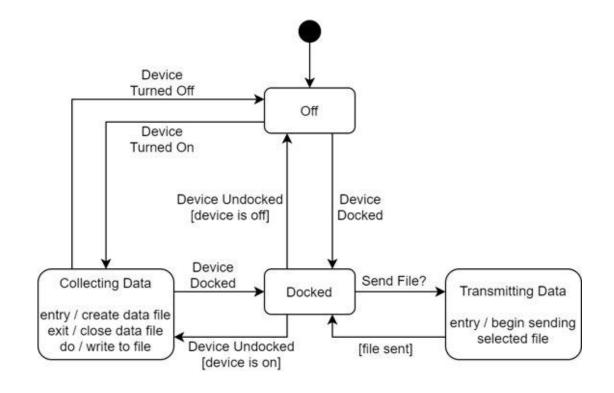
Simulations of the Puck

Hollow Puck No Structure

Solid Puck

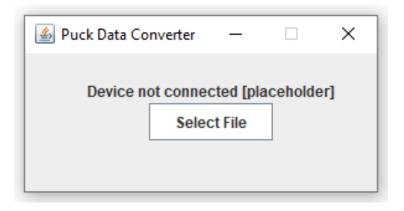
Applying Results

- Determine what stresses puck undergoes
 - External deformation and if forces exist through center of the puck
- Use results to determine potential weak points in design
 - Puck's structure being severely altered will give little support to high forces
- Determine feasibility as an accurate puck tracker
 - What speeds become too much for accelerometer?


Software Overview

- The data logging software on the puck must be capable of both storing data locally on the puck and transmitting data to the user's computer.
- The software on the user's computer will request data from the puck and convert it into CSV.
- The system architecture takes the form of server and client.

Puck Software


- The data logging software does the following:
 - Stores data logging sessions as separate files.
 - Stores data from the sensors and system time in the onboard storage.
 - Automatically stops logging when power is low, storage is full, or the puck is docked.
 - Sends data files requested by the user software.

GUI Software

- The GUI does the following:
 - Connects to the puck using serial
 - Requests data files
 - Converts data files to CSV
 - Clears puck data files

Data Files

- Format of a data point:
 - Time since session start: 4 bytes
 - Unit: milliseconds
 - Value range: 0 to 4.3 billion
 - Accelerometer: 2 bytes per axis
 - Unit: G's
 - Axis range: +/- 16
 - Gyroscope: 2 bytes per axis
 - Unit: degrees per second
 - Axis range: +/- 2048
 - Magnetometer: 2 bytes per axis
 - Unit: gauss
 - Axis range: +/- 4

4	Α	В	С	D	Е	F	G	Н	1	J
1	time (ms)	acc (x)	acc (y)	acc (z)	gyro (x)	gyro (y)	gyro (z)	mag (x)	mag (y)	mag (z)
2	0	1.875488	0.125	0	-0.0625	0	-2048	0	0.000122	0.03125
3	1	1.750488	0	0	-0.0625	0	-2048	-0.00012	0.000244	0.0625
4	2	1.875977	0.375	1	-0.0625	0	-2048	0	0.000488	0.125
5	3	1.750977	0.25	2	-0.0625	0	-2048	-0.00012	0.000977	0.25
6	4	1.876465	0.625	3	-0.0625	0	-2048	0	0.001953	0.5
7	5	1.751465	0.5	4	-0.0625	0	-2048	-0.00012	0.003906	1
8	6	1.876953	0.875	5	-0.0625	0	-2048	0	0.007813	2
9	7	1.751953	0.75	6	-0.0625	0	-2048	-0.00012	0.015625	-4

Questions?

