
1

Requirements and Specification, ESOF 328, Spring 2020

“Understanding user requirements” (Chapter 8)

Jan. 29

Understanding user requirements, Chapter 8

User requirements lie between business requirements and functional/non-functional

requirements

2 techniques for exploring user requirements:

 Use cases

 User stories (came about with agile development)

Both are “user-centric”, focus on what users want to accomplish not what the system

should do.

Use cases:

 Goal-oriented set of interactions between an actor and the system that results in

an outcome that provides value to the actor

 Name is a verb followed by an object

 Provide a list of steps needed to achieve the goal

 The actor can be a human or an external system

 Can encompass multiple scenarios (alternative flow)

User story:

 One or two sentences that articulate a user need, or desired functionality, and the

benefit gained

 Format is:

 As a <type of user>, I want <some goal> so that <some reason>

 Just-in-time information – can fill the story in as information is needed

 User stores can be refined into more focused user story (large user stories called

“epics)

Use cases and user stories are used in different ways:

 Use cases – typically go on and define requirements, and maybe tests

 User stories – typically go on to define acceptance cases, requirements aren’t

developed

2

Use Case diagram

 Use stick figure for actor

 Ovals are use cases

 Arrows show the connection between an actor and a use case

Context-Diagram versus Use Case Diagram

 Both define boundary between objects and the system

 Context diagram provides no visibility into the system, whereas the use case

diagram shows some internal aspects of the system

 Arrows on context diagrams show flow of data, control signals, or physical

materials; arrows on use case diagram use show connection between an actor and

use case (according to Wiegers). Others show action on arrow. (See slide, not

from text)

Use cases:

 Unique identifier

 Short descriptive name

 Short textual description

 List of preconditions - activities that must take place, or any conditions that must

be true, before the use case can be started

 List of postconditions - the state of the system at the conclusion of the use case

execution

 Normal flow – list and number the user actions and system responses that will

take place during execution of the use case under normal, expected conditions

 Alternate flow – list and number the user actions and system responses of other

legitimate usage scenarios that can take place within this use case. Number steps

to show where these could branch off from the normal flow

 Exceptions – list and number (use E to show an exception) any anticipated error

conditions that could occur during execution of the use case, and define how the

system is to respond to those conditions. As with alternate flow, number these to

show where they could occur

Write essential use cases rather than concrete

 Essential – devoid of implementation specifics and constraints. An essential

model depicts information at a conceptual level, independent of how it might be

implemented in a system (page 485).

“Extends” versus “include” stereotypes

 Extends – the extended use case is an alternate course that occurs at a location

specified in the base use case (the location is called the extension point)

 Includes – the included use case is always used. Also the included use case never

stands alone

