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ErrorDriven Classification




Errors, and What to Do

A Examples of errors

Dear GlobalSCAPE Customer,
GlobalSCAPE has partnered with ScanSoft to offer you the

latest version of OmniPage Pro, for just $99.99* - the regular

list price is $499! The most common question we've received

about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and

valid. You can get the . . .

... To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are

there. We hope you enjoyed receiving this message. However, if

you'd rather not receive future e - mails announcing new store
launches, please click . . .




What to Do About Errors

AProblem: there’s still spam in vy

A Need morefeatures—-wor ds aren’t enough!
A Have you emailed the sender before?
A Have 1M other people just gotten the same email?
A Is the sending information consistent?
A Is the email in ALL CAPS?
A Do inline URLs point where they say they point?
A Does the email address you by (your) name?

A NaiveBayesanodels can incorporate a variety of features, but tend to do
best in homogeneous cases (e.q. all features are word occurrences)



L inear Classifiers




Feature Vectors
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Some (Simplified) Biology

A Very loose inspiration: human neurons

Cell body or Soma



L inear Classifiers

A Inputs arefeature values
A Each feature haswaeight
A Sum is theactivation

activationy(x) = Zwi - filx) =w- f(x)

A If the activation is: Wy
f, ——>
A Positive, output +1 fl Wo S = >07—
A Negative, outputl 7, ——




Welights

A Binary case: compare features to a weight vector
A Learning: figure out the weight vector from examples
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Decision Rules




Binary Decision Rule

A In the space of feature vectors
A Examples are points
A Any weight vector is a hyperplane
A One side corresponds to Y=+1
A Other corresponds to YE

w +1 = SPAM
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Weight Updates




Learning: Binary Perceptron

A Start with weights = 0
A For each training instance:
A Classify with current weights

A If correct (i.e., y=y*), no change!

A If wrong: adjust the weight vector




Learning: Binary Perceptron

A Start with weights = 0
A For each training instance: w
A Classify with current weights

+1 if w- f(x) >0 v
y:{—l it w- f(z) <0 /

A If correct (i.e., y=y*), no change!

A If wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* isl.

w=w+y" - f



Examples: Perceptron

A Separable Case
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Multiclass Decision Rule

A If we have multiple classes:
A A weight vector for each class:

Wy
A Score (activation) of a class y:

A Prediction highest score wins

y = argmax wy - f(x)
Y
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Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

A Start with all weights = 0
A Pick up training examples one by one
A Predict with current weights

y = argmax, wy- f(x)

A If correct, no change!

A If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)
Wapk = Wq* + f(z)



Example: Multiclass Perceptron
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Properties of Perceptrons

A Separabilitytrue if some parameters get the training set Separable
perfectly correct o,

) j R

A Convergence: if the training is separalgerceptronwill - .
eventually converge (binary case) - _

A Mistake Bound: the maximum number of mistakes (binary

case) related to thenarginor degree ofseparability Non-Separable

. k = +
mistakes < 5—2



Problems with the Perceptron

ANoise: if the dat
weights might thrash

A Averaging weight vectors over time
can help (averaged perceptron)

, - * e (o
A Mediocre generalization: finds a ) -\:\ | [%
“barely” separating-=- uti on e

) training
A Overtraining: test / helebut >
accuracy usually rises, then falls ©
A Overtraining is a kind of overfitting § test
@ held-out

iterations



Improving thePerceptron




Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
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Non-Separable Case: Probabillistic Decision
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How to get probabilistic decisions?

A Perceptron scoring:z = w - f(z)
Alf  z=w-f(z) very positiveA want probability going to 1
Alf  2=w-f(z) verynegatived want probability going to O

A Sigmoid function

$(2) =

1l +e %3




Best w?

A Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

. . 1
- (i) _ (). 0py) —
with: P(y +1|$ ,w) 1 _|_6_w.f(a;(z'))

1

Pyl = 1]z w) = 1 | & o—w f @)

= Logistic Regression



Separable Case: Deterministic Decistdviany Options
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Separable Case: Probabilistic Decist@lear Preference
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Multiclass Logistic Regression

. w1 - f biggest
A Recall Perceptron: w1

A A weight vector for each class: Wy

A Score (activation) of a class y: Wy - f(a:) w3

wp
A Prediction highest score wins y = arg max wy, - f(x) w3 - f
J wa - f biggest
biggest
A How to make the scores into probabilities?
z
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Best w?

A Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

| (1) (D) RUCRICES
with: P(y ‘aj ,”(U) — Zy ewy.f(a;(i))

= Multi-Class Logistic Regression



Classification: Comparison

A Naive Bayes
A Builds a model training data
A Gives prediction probabilities
A Strong assumptions about feature independence
A One pass through data (counting)

A Perceptrons
A Makes less assumptions about data
A Mistakedriven learning
A Multiple passes through data (prediction)
A Often more accurate



Apprenticeship




Pacmanpprenticeship!

A Examples are states s

“correct?

A Candidates are pairs,f Sction a*
A“Correct” actions: those aken by ex
A Features defined oves(g pairs: 6,3

A Score of a estate 6,3 given by: Va 7 a¥,

w-f@) > w- ()
w - f(s,a)

A How is this VERY different from reinforcement learning?
[Demo:Pacmanpprentice (L22D1,2,3
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