Name: \qquad

CSCI 441 - Assignment 3

Due Friday 2/2/18
25 points total
Turn this in as a paper copy. Show all your work, not just an answer.

1. Write down $4 * 4$ matrices for each of the following:
2. To translate by the vector $(1,2,3)$
3. To scale with respect to the origin by the amount $(2,4,6)$
4. To rotate around the z-axis by 45 degrees (note $\sin 45=\cos 45=1 /$ sqrt(2))
5. To rotate around the x -axis by 45 degrees.
6. Find the $4 * 4$ transformation matrices in order to accomplish:
7. Scaling an object with respect to the origin by 2 in x, y and z followed by a translation by $(1,1,1)$.
8. Translation of an object by $(1,1,1)$ followed by a scaling with respect to the origin by 2 in x, y and z .

Why are the two matrices different?
3. Find a matrix that will do a scale by (a, b, c) with respect to the point (x, y, z).
4. The transpose of a matrix with elements $\mathrm{a}[\mathrm{i}, \mathrm{j}]$ is the matrix with elements $\mathrm{a}[\mathrm{j}, \mathrm{i}]$. (I.e., the rows become columns and the columns become rows). An orthogonal matrix is one which when multiplied by its transpose results in the identity matrix. Hence, the transpose is also the inverse of such a matrix. Amongst the various matrices (translation, scaling, rotation about X, Y and Z axes) - which are orthogonal?

