Theory of Computation, CSCI 438 spring 2022
 Multitape Turing Machines, pg. 176-178, March $27^{\text {th }}$

2-tape Turing Machine: Like an ordinary Turing Machine but has two tapes, each with its own read/write head. The input is on tape 1 followed by blanks and tape 2 is completely blank. The read/write heads are positioned in the first positions of each tape. For flexibility, say that the read/write heads can move separately, that is allow stays.

$$
\begin{aligned}
& \mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma_{1}, \Gamma_{2}, \delta, \mathrm{q}_{0}, \mathrm{q}_{\text {accept }}, \mathrm{q}_{\text {reject }}\right) \\
& \left.\delta: \mathrm{Qx} \Gamma_{1} \times \Gamma_{2} \rightarrow \mathrm{Qx} \times \Gamma_{1} \times \Gamma_{2} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~S}\} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~S}\}\right)
\end{aligned}
$$

Multitape Turing Machine: Like an ordinary Turing Machine but has k tapes so k read/write heads. Say initially, input on tape 1 is as usual and the other tapes are blank. Formally define the machine:

```
\(\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\text {accept, }} \mathrm{q}_{\mathrm{reject}}\right)\)
\(\delta: \mathrm{Qx} \Gamma^{\mathrm{k}} \rightarrow \mathrm{Qx} \Gamma^{\mathrm{k}} \mathrm{x}\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}^{\mathrm{k}}\)
\(\delta: \mathrm{Qx} \Gamma \mathrm{x} \Gamma \mathrm{x} \ldots \mathrm{x} \Gamma \rightarrow \mathrm{Qx} \Gamma \mathrm{x} \Gamma \mathrm{x} \ldots \mathrm{x} \Gamma,\{\mathrm{L}, \mathrm{R}, \mathrm{S}\} \mathrm{x}\{\mathrm{L}, \mathrm{R}, \mathrm{S}\} \mathrm{x} \ldots \mathrm{x}\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}\)
        \(k\) times \(k\) times \(k\) times
```

