Theory of Computation, CSCI 438 spring 2022 Introduction to Complexity Theory and Complexity Relationships among Models, pg. 275-284, April 22nd

Let $A = \{0^k 1^k | k \ge 0\}$

1. Find the time complexity of deciding A using a single tape Turing machine.

2. If your above algorithm runs in $O(n^2)$, define an algorithm that runs in $O(nLog_2n)$.

3. Find the time complexity of deciding A using a 2-tape Turing machine.

4. Describe why the following theory makes sense: Theorem 7.8 (page 282) Let t(n) be a function, where t(n)≥n. Then every t(n) time multi-tape Turing machine has an equivalent O(t²(n)) time single-tape Turing machine. 5. Describe why the following theory makes sense: Theorem 7.11 (page 284)

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic Turing machine.

6. Exercise 7.5

Is the following formula satisfiable?

 $(x \lor y) \land (x \lor y) \land (x \lor y) \land (x \lor y)$

8. Using the fact that A_{TM} is not decidable, prove that HALT is not decidable.

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ encodes a TM}, w \text{ is a string in the alphabet of M, and M halts on w} \}$