Regular Expressions

EXAMPLE 1.53

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

- 1. $0*10* = \{w | w \text{ contains a single 1}\}.$
- 2. $\Sigma^* \mathbf{1} \Sigma^* = \{ w | w \text{ has at least one 1} \}.$
- 3. $\Sigma^* 001\Sigma^* = \{w | w \text{ contains the string 001 as a substring} \}$.
- **4.** $1^*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1} \}.$
- 5. $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}.^5$
- **6.** $(\Sigma\Sigma\Sigma)^* = \{w | \text{ the length of } w \text{ is a multiple of } 3\}.$

Regular Expressions - continued

- 7. $01 \cup 10 = \{01, 10\}.$
- **8.** $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w | w \text{ starts and ends with the same symbol}\}.$
- 9. $(0 \cup \varepsilon)1^* = 01^* \cup 1^*$. The expression $0 \cup \varepsilon$ describes the language $\{0, \varepsilon\}$, so the concatenation operation adds either 0 or ε before every string in 1^* .
- **10.** $(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}.$
- **11.** $1^*\emptyset = \emptyset$.

Concatenating the empty set to any set yields the empty set.

12. $\emptyset^* = \{ \varepsilon \}.$

The star operation puts together any number of strings from the language to get a string in the result. If the language is empty, the star operation can put together 0 strings, giving only the empty string.