Regular Expressions

EXAMPLE 1.53
In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

1. $0^{*} 10^{*}=\{w \mid w$ contains a single 1$\}$.
2. $\Sigma^{*} 1 \Sigma^{*}=\{w \mid w$ has at least one 1$\}$.
3. $\Sigma^{*} 001 \Sigma^{*}=\{w \mid w$ contains the string 001 as a substring $\}$.
4. $1^{*}\left(01^{+}\right)^{*}=\{w \mid$ every 0 in w is followed by at least one 1$\}$.
5. $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\} .{ }^{5}$
6. $(\Sigma \Sigma \Sigma)^{*}=\{w \mid$ the length of w is a multiple of 3$\}$.

Regular Expressions continued

7. $01 \cup 10=\{01,10\}$.
8. $0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1=\{w \mid w$ starts and ends with the same symbol $\}$.
9. $(0 \cup \varepsilon) 1^{*}=01^{*} \cup 1^{*}$.

The expression $0 \cup \varepsilon$ describes the language $\{0, \varepsilon\}$, so the concatenation operation adds either 0 or ε before every string in 1^{*}.
10. $(0 \cup \varepsilon)(1 \cup \varepsilon)=\{\varepsilon, 0,1,01\}$.
11. $1^{*} \emptyset=\emptyset$.

Concatenating the empty set to any set yields the empty set.
12. $\emptyset^{*}=\{\varepsilon\}$.

The star operation puts together any number of strings from the language to get a string in the result. If the language is empty, the star operation can put together 0 strings, giving only the empty string.

