Transaction Management, Chapter 22

Concepts of Transaction Management

Three topics:

- Transactions
- Concurrency
- Recovery

Services of DBMS

Services typically provided by a DBMS:

1. Data storage, retrieval and update
2. User-accessible catalog
3. Transaction support
4. Concurrency control
5. Recovery
6. Authorization
7. Support for data communications
8. Integrity
9. Data independence
10. Utilities - importing, monitoring

Components of a DBMS

Figure 3.14
Major components of a DBMS.

Components of a Database

Manager
Figure 3.15
Components of a database manager.

Definition of Transactions

Transaction - a logical unit of work which takes
a database from a consistent state to a consistent state. The database may be in an inconsistent state during the transaction.

Transaction Properties

ACID Properties:

- A - Atomic
- C - Consistent
- I - Isolation
, D - Durabilty

Examples when might need transactions DreamHome rental DB

```
Staff
PropertyForRent
    (staffNo, fName, IName, position, sex, DOB, salary, branchNo)
    (propertvNo, street, city, postcode, type, rooms, rent, ownerNo, staffNo,
branchNo)
```

read(staffNo $=x$, salary)
salary $=$ salary * 1.1
write(staffNo $=x$, salary)

```
delete(staffNo = x)
for all PropertyForRent records, pno
begin
    read(propertyNo = pno, staffNo)
    if (staffNo = x) then
    begin
        staffNo = newStaffNo
        write(propertyNo = pno, staffNo)
    end
end
```

Figure 22.1 Example transactions.

Outcomes of Transactions

Two possible outcomes:

- Successful - COMMIT
- Unsuccessful, so ROLLBACK

Transaction Keywords

Keywords:

- BEGIN TRANSACTION
- COMMIT
- ROLLBACK
- SAVEPOINT

Interleaving Problems

Three problems are possible when interleaving is allowed:

- Lost update problem
- Uncommitted dependency problem
- Inconsistent analysis problem

Lost Update Problem (pg. 575)

Time	T_{1}	T_{2}	$\mathrm{bal}_{\mathrm{x}}$
t		begin_transaction	100
t_{2}	begin_transaction	read (bal $_{1}$)	100
t_{3}	read (bal $_{1}$)	bal $_{\text {a }}=$ bal $^{\text {a }}+100$	100
4_{4}	bal $_{\text {x }}=$ bal -10	write(bal $_{\text {l }}$)	200
t_{5}	write(bal $_{\text {l }}$)	commit	90
t/f	commit		90

Figure 22.4 The lost update problem.

Uncommitted Dependency Problem (pg. 576)

Time	T3	T_{4}	bals
4		begin_transaction	100
12		read (bal)	100
4		bal $=$ bal $^{\text {a }}+100$	100
4	begin_transaction	write($\mathrm{bal}_{\mathrm{x}}$)	200
${ }_{5}$	read (bal)	!	200
t_{6}	bal $_{x}=$ bal $_{x}-10$	rollback	100
${ }_{7}$	write(bal $_{\text {l }}$)		190
18	commit		$19)$

Figure 22.5 The uncomnitted dependency problem.

Inconsistent Analysis Problem (pg. 576)

Time	T_{5}	T_{6}	$\mathrm{bal}_{\mathrm{x}}$	$\mathrm{bal}_{\mathrm{y}}$	bal_{2}	sum
t_{1}		begin_transaction	100	50	25	
t_{2}	begin_transaction	sum $=0$	100	50	25	0
t_{3}	$\operatorname{read}\left(\right.$ bal $\left._{x}\right)$	$\operatorname{read}\left(\mathrm{bal}_{\mathrm{x}}\right)$	100	50	25	0
t_{4}	$\mathrm{bal}_{\mathrm{x}}=\mathrm{bal}_{x}-10$	sum $=$ sum $+\mathrm{bal}_{\mathrm{x}}$	100	50	25	100
t_{5}	write($\mathrm{bal}_{\mathrm{x}}$)	read(baly)	90	50	25	100
t_{6}	$\operatorname{read}\left(\mathrm{bal}_{\mathbf{z}}\right)$	sum $=$ sum + bal $_{\text {y }}$	90	50	25	150
t_{7}	$\mathrm{baI}_{\mathrm{z}}=\mathrm{bal}_{\mathbf{z}}+10$		90	50	25	150
t_{8}	write($\mathrm{bal}_{\mathrm{z}}$)		90	50	35	150
t_{9}	commit	$\operatorname{read}\left(\mathrm{baI}_{z}\right)$	90	50	35	150
t_{10}		sum $=$ sum $+\mathrm{bal}_{\mathbf{z}}$	90	50	35	185
t_{11}		commit	90	50	35	185

Figure 22.6 The inconsistent analysis problem.

MySQL and Transactions

- MySQL has several database storage engines
- Only one of them supports transactions
, SHOW ENIGINES;

mysql> show engines;

\| Engine	\| Support	\| Comment	\| Trans	\| XA	\| Save		
\| InnodB	\| DEFAULT	\| Supports transactions, row-level locking, and foreign keys	\| YES	\\| YES	\\| YES		
\| MRG_MYISAM	\| YES	\| Collection of identical MyISAM tables	\| NO	\| NO	\| NO		
\| MYISAM	\| YES	\| MyISAM storage engine	I NO	I No	I NO		
\| BLACKHOLE	\| YES	\| /dev/null storage engine (anything you write to it disappears)	I NO	I No	1 NO		
\| MEMORY	\| YES	\| Hash based, stored in memory, useful for temporary tables	I NO	I No	I No		
\| CSV	\| YES	\| CSV storage engine	I NO	I NO	I NO		
\| ARCHIVE	I YES	\| Archive storage engine	I No	1 No	I NO		
\| FEDERATED	1 NO	\| Federated MySQL storage engine	\| NULL	\| NULL	\| NULL		
\| PERFORMANCE_SCHEMA	\| YES	\| Performance Schema	I NO	I NO	\| NO		

MySQL DB Engines

```
mysql> show engines;
+---------------------
| Engine
+---------------------
| InnoDB
| MRG MYISAM
| MYISAM
| BLACKHOLE
| MEMORY
| CSV
| ARCHIVE
| FEDERATED
| PERFORMANCE_SCHEMA
+---------------------
9 rows in set (0.01 st
```


InnoDB Vs. MyISAM

InnoDB

MyISAM

Developed by Finnish company	Indexed sequential access method
called Innobase Oy (subsidiary of	
Oracle	

High reliability, high performance Simpler
Newer Older, this is the default
Strict data integrity
Flexible
Foreign keys and relationship
None constraints
Crash recovery Poor at crash recovery
Doesn't have full-text search index Has full-text search index
Row level locks
Table level locks

Recovery

| Media Type | type | Access speed | Reliability | Cost |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Main Memory | volatile | fast | low | expensive |
| Magnetic disk | nonvolatile, online | $3-4 \times$ slower
 than main
 memory | higher than main
 memory | much cheaper
 than main
 memory |
| Magnetic tape | Nonvolatile, offline | slow, only
 sequential
 access | far more reliable
 than disk | inexpensive |

Equivalent Schedules (pg. 579)

Time	T_{7}	T_{8}
4	begin_transaction	
t_{2}	read(bal $_{\text {l }}$)	
t_{3}	write(bal $_{\text {x }}$)	
4		begin_transaction
${ }_{5}$		read $\left(\mathrm{bal}_{\mathrm{x}}\right)$
${ }_{6}$		write($\mathrm{bal}_{\mathrm{x}}$)
${ }_{5}$	read(baly)	
t_{8}	write(baly)	
t9	commit	
t_{10}		read (bal $_{\text {l }}$)
t_{11}		write(baly)
t_{12}		commit

(a) Schedule S_{1}

T_{7}	T_{8}
begin_transaction	
$\operatorname{read}\left(\right.$ bal $\left._{\text {l }}\right)$	
write(bal_{1})	
	begin_transaction
	read(balx)
read(bal $_{\text {l }}$)	
	write(bal ${ }_{\text {a }}$)
write(baly ${ }^{\text {a }}$	
commit	
	read(baly)
	write(baly)
	commit

(b) Schedule S_{2}

T_{7}	T_{8}
begin_transaction $\operatorname{read}\left(\right.$ bal $\left._{x}\right)$ write(bal ${ }_{x}$) read(baly) write(baly) commit	
	begin_transaction $\operatorname{read}\left(\right.$ bal $\left._{x}\right)$ write(bal ${ }_{x}$) read(baly) write(baly) commit

(c) Schedule S_{3}

Figure 22.7 Equivalent schedules: (a) nonserial schedule S_{1}; (b) nonserial schedule S_{2}
equivalent to S_{i}; (c) serial schedule S_{3}, equivalent to S_{1} and S_{2}.

Transaction Syntax

In MySQL:
BEGIN WORK;
COMMIT; or ROLLBACK;

SQLServer and most other products: BEGIN TRANSACTION

COMMIT; or ROLLBACK;

2PL on Lost Update Problem (pg. 587)

Time	T_{1}	T_{2}	bal $_{\text {x }}$
${ }_{1}$		begin_transaction	100
t_{2}	begin_transaction	write_lock(bal ${ }_{\text {x }}$)	100
t_{3}	write_lock($\mathrm{bal}_{\mathrm{x}}$)	$\mathrm{read}\left(\mathrm{bal}_{x}\right)$	100
t_{4}	WAIT	bal ${ }_{\text {x }}=\mathrm{bal}_{x}+100$	100
t_{5}	Wait	write(bal ${ }_{\text {x }}$)	200
t_{6}	WAIT	commit/unlock($\mathbf{b a l}_{\mathbf{x}}$)	200
t_{7}	$\underline{r e a d}\left(\mathrm{bal}_{x}\right)$		200
t_{8}	$\mathrm{bal}_{\mathbf{x}}=\mathrm{bal}_{\mathbf{x}}-10$		200
t_{9}	write $\left(\right.$ bal $\left._{x}\right)$		190
t_{10}	commit/unlock($\mathbf{b a l}_{\mathbf{x}}$)		190

Figure 22.15 Preventing the lost update problem.

2PL on Uncommitted Dependency Problem (pg. 588)

Time	T3	T4	bal_{2}
t_{1}		begin_transaction	100
t_{2}		write_lock($\mathrm{bal}_{\mathrm{x}}$)	100
t_{3}		$\operatorname{read}\left(\mathrm{bal}_{\mathrm{x}}\right)$	100
t_{4}	begin_transaction	$\mathrm{bal}_{\mathrm{x}}=\mathrm{bal}_{\mathrm{x}}+100$	100
t_{5}	write_lock($\mathrm{bal}_{\mathrm{x}}$)	write(bal ${ }_{x}$)	200
${ }_{6} 6$	WAIT	rollback/unlock(bal ${ }_{\text {x }}$)	100
t_{7}	$\operatorname{read}\left(\mathrm{bal}_{x}\right)$		100
t_{8}	$\mathrm{baI}_{\mathbf{x}}=\mathrm{bal}_{\mathbf{x}}-10$		100
t_{9}	write(bal ${ }_{x}$)		90
t_{10}	commit/unlock($\mathrm{bal}_{\mathrm{x}}$)		90

Figure 22.16 Preventing the uncommitted dependency problem.

2PL on Inconsistent Analysis Problem (pg. 588)

Time	T_{5}	T_{6}	bal $_{x}$	$\mathrm{bal}_{\mathrm{y}}$	bal_{z}	sum
t_{1}		begin_transaction	100	50	25	
t_{2}	begin_transaction	sum $=0$	100	50	25	0
t_{3}	write lock(bal $_{\text {x }}$)		100	50	25	0
t_{4}	read $\left(\mathrm{baI}_{x}\right)$	read_lock(bal ${ }_{\text {a }}$)	100	50	25	0
t_{5}	bal $_{x}=$ bal $_{x}-10$	WAIT	100	50	25	0
t_{6}	write($\mathrm{bal}_{\mathrm{x}}$)	WAIT	90	50	25	0
${ }_{7}$	write lock(bal ${ }_{\mathbf{z}}$)	Wait	90	50	25	0
t_{8}	$\mathrm{read}\left(\mathrm{bal}_{z}\right)$	WaIT	90	50	25	0
t_{9}	$\mathrm{bal}_{z}=\mathrm{bal}_{\mathbf{z}}+10$	WAIT	90	50	25	0
t_{10}	write(bal ${ }_{2}$)	WAIT	90	50	35	0
t_{11}	commit/unlock $\left(\right.$ bal $_{x}$, bal $_{z}$)	WAIT	90	50	35	0
t_{12}		$\operatorname{read}\left(\mathrm{bal}_{x}\right)$	90	50	35	0
t_{13}		sum $=$ sum $+\mathrm{bal}_{\mathrm{x}}$	90	50	35	90
t_{14}		read lock(bal_{y})	90	50	35	90
t_{15}		$\operatorname{read}\left(\mathrm{bal}_{\mathrm{y}}\right)$	90	50	35	90
t_{16}		sum $=$ sum + bal $_{y}$	90	50	35	140
t_{17}		read_lock($\mathrm{bal}_{\mathbf{z}}$)	90	50	35	140
t_{18}		read(bal ${ }_{\text {z }}$)	90	50	35	140
t_{19}		sum $=$ sum + bal $_{2}$	90	50	35	175
t_{20}		commit/unlock($\mathrm{bal}_{\mathrm{x}}$, bal $_{\mathrm{y}}$, bal $_{\text {a }}$)	90	50	35	175

Figure 22.17 Preventing the inconsistent analysis problem.

Deadlock (pg. 591)

Time	T_{17}	T_{18}
t_{1}	begin_transaction	
t_{2}	write_lock($\mathrm{bal}_{\mathbf{x}}$)	begin_transaction
t_{3}	$\operatorname{read}\left(\mathrm{bal}_{x}\right)$	write_lock(bal ${ }_{\text {y }}$)
t_{4}	$\mathrm{bal}_{\mathrm{x}}=\mathrm{bal}_{\mathrm{x}}-10$	$\mathrm{read}\left(\mathrm{bal}_{y}\right)$
t_{5}	write($\mathrm{bal}_{\mathrm{x}}$)	bal $_{\mathrm{y}}=\mathrm{bal}_{y}+100$
t/6	write_lock(baly)	write($\mathrm{bal}_{\mathrm{y}}$)
t_{7}	WAIT	write_lock(bal ${ }_{\mathbf{x}}$)
t_{8}	WAIT	WAIT
t_{9}	WAIT	Wait
t_{10}	!	WAIT
t_{11}	:	!

Figure 22.19
Deadlock
between two transactions.

Timestamping (pg. 596)

Time	Op	T_{19}	T_{20}	T_{21}
t_{1}		begin_transaction		
t_{2}	$\operatorname{read}\left(\right.$ bal $\left._{\text {x }}\right)$	$\operatorname{read}\left(\mathrm{bal}_{\mathbf{x}}\right)$		
t_{3}	bal ${ }_{x}=\mathrm{bal}_{x}+10$	bal $_{x}=$ bal $_{x}+10$		
t_{4}	write(bal $^{\text {a }}$)	write(bal $^{\text {x }}$)	begin_transaction	
t_{5}	$\operatorname{read}\left(\mathrm{bal}_{y}\right)$		$\operatorname{read}\left(\mathrm{bal}_{y}\right)$	
16	$\mathrm{bal}_{\mathrm{y}}=\mathrm{bal}_{\mathrm{y}}+20$		bal $_{y}=$ bal $_{y}+20$	
${ }_{7}$	$\text { read(bal }{ }_{y} \text {) }$			read(baly)
t_{8}	write(baly		write(bal $\left._{\text {y }}\right)^{+}$	
t_{9}	bal $_{\mathrm{y}}=\mathrm{bal}_{\mathrm{y}}+30$			$\mathbf{b a l}_{\mathrm{y}}=\mathbf{b a l}_{\mathrm{y}}+30$
t_{10}	write(baly ${ }_{\text {y }}$)			write(baly)
t_{11}	$\mathrm{bal}_{2}=100$			$\mathrm{bal}_{\mathrm{z}}=100$
t_{12}	write(bal $_{2}$)			write(bal $_{z}$)
t_{13}	$\mathrm{baI}_{\mathrm{z}}=50$	$\mathrm{baI}_{2}=50$		commit
t_{14}	$\text { write }\left(\text { bal }_{\mathbf{z}}\right)$	$\text { write }\left(\mathrm{bal}_{2}\right)^{\ddagger}$		
t_{15}	read(baly)	commit	read(baly)	
t_{16}	$\mathrm{bal}_{\mathrm{y}}=\mathrm{bal}_{\mathrm{y}}+20$		$\text { bal }_{y}=\text { bal }_{y}+20$	
t_{17}	write(baly)		write(baly)	
t_{18}			commit	

${ }^{1}$ At time $\mathrm{t}_{8,}$, the write by transaction T_{20} violates the first timestamping write rule described previously and therefore is aborted and restarted at time t_{14}.
F At time t_{14}, the write by transaction T_{19} can safely be ignored using the ignore obsolete write rule, as it would have been overwritten by the write of transaction T_{21} at time t_{12}.

Figure 22.21 Timestamping example.

Recovery Example (pg. 605)

Figure 22.24 Example of UNDO/REDO.

Recovery - Sample Portion of a Log

File

Tid	Time	Operation	Object	Before image	After image	pPtr	nPtr
Tl	10:12	START				0	2
Tl	10:13	UPDATE	STAFF SL21	(old value)	(new value)	1	8
T2	10:14	START				0	4
T2	10:16	INSERT	STAFF SG37		(new value)	3	5
T2	10:17	DELETE	STAFF SA9	(old value)		4	6
T2	10:17	UPDATE	PROPERTY PG16	(old value)	(new value)	5	9
T3	10:18	START				0	11
T1	10:18	COMMIT				2	0
	10:19	CHECKPOINT	T2, T3				
T2	10:19	COMMIT				6	0
T3	10:20	INSERT	PROPERTY PG4		(new value)	7	12
T3	10:21	COMMIT				11	0

Figure 22.25
A segment of a
log file.

