

1

Concepts of Programming Languages, CSCI 305, Fall 2021

Lab 7, Prolog, Nov. 12

/***************************

 * ancestry.pl

 * father(x,y) means that x is the father of y.

 * mother(x,y) means that x is the mother of y.

 ***************************/

father(ed, celia).

father(ed, david).

father(stephen, ed).

father(jeff, michele).

father(wally, karen).

mother(peggy, celia).

mother(peggy, david).

mother(peggy, jim).

mother(peggy, barb).

mother(peggy, mike).

mother(karen, jeff).

mother(celia, michele).

mother(clara, karen).

Using this database of facts (later you will add rules to it), write Prolog queries to return

the following:

1. All mothers in the database. (Mother names will be repeated. That is ok.)

2. All children in the database that have both parents.

3. All children that have at least one parent.

4. All children that only have a mother.

5. All children that only have one parent.

2

6. Add a rule to the database which defines parent(X,Y) to mean that X is a parent of

Y and display all of the parent, child combinations.

7. Add a rule to the database which defines ancestor(X,Y) to mean that X is an

ancestor Y and display all of the ancestors of michele.

3

8. Sections 12.2.5 & 11.2.6, pages 600-609, present a Prolog program which plays

Tic-Tac-Toe. In that program the following built-in functions are used:

 asserta – place a fact temporarily into the db

 repeat – continues searching (provided ‘;’ is entered)

 retractall – to remove facts which you have asserted (using asserta).

Also the following Prolog construct is used:

Cut (!) – a zero-argument predicate which always succeeds and causes searching

to stop.

Walk through the following code so that you understand what it does.

/***************************

 * Tic-Tac-Toe

 *

 * Chapter 12, Logic Languages

 * Section 12.2.5, page 609, modified so that either the player

 * or computer can go first.

 *

 * To execute:

 * At ?- prompt enter consult(ticTacToe).

 * At ?- prompt enter play.

 ***************************/

% Specify all win situations.

ordered_line(1, 2, 3).

ordered_line(4, 5, 6).

ordered_line(7, 8, 9).

ordered_line(1, 4, 7).

ordered_line(2, 5, 8).

ordered_line(3, 6, 9).

ordered_line(1, 5, 9).

ordered_line(3, 5, 7).

% Allow for wins listed in different orders.

line(A, B, C) :- ordered_line(A, B, C).

line(A, B, C) :- ordered_line(A, C, B).

line(A, B, C) :- ordered_line(B, A, C).

line(A, B, C) :- ordered_line(B, C, A).

line(A, B, C) :- ordered_line(C, A, B).

line(A, B, C) :- ordered_line(C, B, A).

% Square contains X or 0

full(A) :- x(A).

full(A) :- o(A).

empty(A) :- \+(full(A)).

same(A,A).

different(A,B) :- \+(same(A,B)).

move(A):- good(A), empty(A), !.

4

% Strategy

good(A) :- win(A).

good(A) :- block_win(A).

good(5).

good(1).

good(3).

good(7).

good(9).

good(2).

good(4).

good(6).

good(8).

win(A) :- x(B), x(C), line(A,B,C).

block_win(A) :- o(B), o(C), line(A,B,C).

all_full :- full(1), full(2), full(3), full(4),

 full(5), full(6), full(7), full(8), full(9).

done :- line(A,B,C), x(A), x(B), x(C), write('I won'), nl.

done :- all_full, write('Draw'), nl.

% User's move

getmove :- repeat, write('Please enter a move: '), read(X), empty(X),

 asserta(o(X)).

makemove :- move(X), !, asserta(x(X)).

makemove :- all_full.

% Computer's move

respond :- line(A,B,C), o(A), o(B), o(C),

 printboard, write('You won.'), nl. %Shouldn't ever happen!

respond :- makemove, printboard, done.

% Print the board

printsquare(N) :- o(N), write(' o ').

printsquare(N) :- x(N), write(' x ').

printsquare(N) :- empty(N), write(' ').

printboard :- write('Board:'), nl,

 printsquare(1), printsquare(2), printsquare(3), nl,

 printsquare(4), printsquare(5), printsquare(6), nl,

 printsquare(7), printsquare(8), printsquare(9), nl.

% Clear everything to start a new game.

clear :- retractall(x(_)), retractall(o(_)),

 write('Board:'), nl,

 write(' 1 '), write(' 2 '),write(' 3 '), nl,

 write(' 4 '), write(' 5 '),write(' 6 '), nl,

 write(' 7 '), write(' 8 '),write(' 9 '), nl,

 write('You will be o, computer will be x. '), nl,

 write('Enter moves by giving a number (1-9) followed by a period.'),nl,

 nl.

5

% main goal. Play the game.

play :- clear,

 write('Want to go first (y for yes, anything else for no)? (Remember the

period.) '),

 read(X), nl, first(X).

first(y) :- taketurns.

first(_) :- makemove, printboard, taketurns.

taketurns :- repeat, getmove, respond.

9. Get a copy of the TicTacToe program, bring it into the environment, and run it by

entering:

 ?- play.

10. Knowing the strategy which the computer will use, tell the values to be entered to

win the game.

11. Add the split rule to the computer’s strategy.

split(A) :- x(B), x(C), different(B, C),

 line(A, B, D), line(A, C, E),

 empty(D), empty(E).

A space meets the split rule if it is in two different lines, where the computer has a

cell in both lines and the third cell in the two lines are empty.

12. Add other rules to improve the strategy of the code.

