
Scheme

Chapter 11

1

Scheme - Functional Language

 Historical context

 Problem area addresses

 Data structures & how implemented

 Built-in items & libraries

 Sample code

 Translation process

 New features

 Strengths & weaknesses

 Conclusion

2

Historical Context – Functional

Languages

 1940’s computers programed using machine

language

 FORTRAN, first high-level programming

language (1954)

 Lisp, first functional language (1958)

 Also in 1958

 Flow-Matic precursor to COBOL

 ALGOL - standard method of describing

algorithms, influencer of all imperative languages

3

Historical Context – Scheme

 Scheme general semantics & syntax came

from Lisp, lexical (static) scoping and block

structure came from ALGOL

 Developed from MIT AI Memos known as the

Lambda Papers (1975-1980)

 Versions in 1975, 1978, 1984, standardized in

1990, revised 1998, 2006, 2007

 Influenced R, Rust and Swift

4

Problem Area Addressed

LISP follows the mathematical paradigm of

algorithms much more than Fortran

Fortran defined for number crunching

LISP for symbolic manipulation

5

Why use a Functional Language

Functional languages are useful for :

 game AI portion – nice list manipulations

 mathematical computations – easy to read

 concurrency – since no state

 want to prove correctness

6

Problem Area Addressed by

Scheme

Contrary to Lisp, Scheme is functional yet:

 Uses lexical scoping

 Includes imperative features

7

Scheme Data Structures

Scheme (and Lisp) only have two data structures

Atom – symbol

Lists

Atoms: X, hello, #t, #f, 0.566, ½, 3.5 + 4i

Lists: (A B C D) , (A (B C) D (E (F G)))

8

Internal Implementation

Data structure:

(a b c)

9

Major Built-In Procedures: car

and cdr

car – takes a list are returns the first element

in the list

(car ‘(1 2 3)) => 1

cdr – takes a list and returns the rest of the

list

(cdr ‘(1 2 3)) => ‘(2 3)

10

Built-In Procedures

cons – takes an element and a list and

inserts the element into the first position of

the list

list – takes any number of elements and

constructs a list from them

append – takes two lists and combines them

into a single list

length – takes a list and returns it’s length

11

Built-In Procedures
define – takes a name and a literal and binds the
name to the literal

lambda – takes a list of operands and a function
definition and optional a list of values, and creates a
function

Example:

(define x ‘(a b c)) ; x is a list

(define x (lambda ; x is a procedure
(n1 n2) (+ n1 n2)

)

12

Built-In Predicates
Predicate a procedure that returns #t or #f. By
convention, predicates end with ‘?’.

null?

list?

boolean?
number?

equal?
procedure?

zero? - expects a number

even? - expects an integer

odd? - expects an integer

=, <, <=, >, >= - expect numbers

13

Scheme Data Libraries
Racket libraries:

 Draw - basic drawing tools, including drawing
contexts such as bitmaps and PostScript files.

 Gui - GUI widgets such as windows, buttons,
checkboxes, and text fields. The library also
includes a sophisticated and extensible text
editor.

 Pict - functional abstraction layer over draw,
useful for creating slide presentations and
images

14

Sample Code
Take a start and end and return a list of the numbers
between, inclusive.

Example (myCount 1 5) returns (1 2 3 4 5)

(define myCount

(lambda (start stop)

(if (<= start stop)

(cons start (myCount (+ start 1) stop))

'())

)

)

15

Scheme Translation

Scheme is interpreted

Scheme interpreter cycles continuously

through

 Read

 Evaluate

 Print

16

New Features of Functional

Programs

Ability to create functions “on the fly” –

lambda

Higher order functions

17

Higher Order Functions

Higher order functions are functions that

takes functions as arguments

Example: map

(define square (lambda (x) (* x x)))

(map square ‘(2 3 4)) returns ‘(4 9 16)

18

Create Functions on-the-fly

From before:

(define square (lambda (x) (* x x)))

(map square ‘(2 3 4)) returns ‘(4 9 16)

Equivalently,

(map (lambda (x) (* x x))) ‘(2 3 4))

19

Strengths of Functional

Languages

Without understanding functional

programming, you can’t invent MapReduce,

the algorithm that makes Google so massively

scalable. The terms Map and Reduce come

from Lisp and functional programming.

Purely functional programs have no side effects

and are thus trivially parallelizable which is good

for concurrency

20

Weaknesses of Functional

Languages

Performance - Using only immutable values (no
side-effects) and recursion can lead to
performance problems – high RAM use and
speed

Debugging - Writing pure functions is easy, but
when combining them, debugging gets hard

Pure functions and I/O don’t mix

For some, recursion isn’t natural

21

Conclusion – Why Study

Scheme?

 Writing programs in Scheme helps you

think recursively

 Recursion is a powerful problem solving

skill

 Good for demonstrating certain

language features such as higher order

functions

22

Conclusion

Experience programming in Scheme will

make you a stronger programmer and

more knowledgeable about programming

languages in general.

23

Scheme via Dr. Racket on

Windows

24

Dr. Racket
25

Scheme on katie
On kaite: mzscheme located at

/usr/bin/mzscheme.

To invoke: mzscheme

Welcome to Racket v5.2.1.

>

>(load “filename.mz”)

> (exit)

26

Read-Evaluate-Print
Scheme interpreter cycles continuously through

 Read

 Evaluate

 Print

Sometimes called REPL for Read-Evaluate-Print
Loop (pronounced REP-ple)

Items are automatically evaluated.

Single quote - “don’t evaluate.”

> a => a: unbound identifier

> ‘a => a

27

Basic Types

Literals (numbers, Booleans, strings, characters)

evaluate to themselves. For example:

> 23 => 23

>#t => #t

> “hello” => “hello”

> #\c => #\c

28

Scheme – Don’t Evaluate

 Single quote lists since don’t want evaluation to

take place

 Once a list is quoted, don’t quote elements within it

Example:

> (1 2 3) => application: not a procedure;

expected procedure, given: 1

> ’(1 2 3) => ‘(1 2 3)

29

Built-In Procedures

if – takes a predicate, then-expression, and

else-expression and evaluates one of the

expressions based on the predicate

when – takes a predicate and expression to

eval

unless – takes a predicate and expression to

evaluate when the predicate is false

30

Built-In Procedures

cond – takes any number of pairs where

each pair consists of a predicate followed

by an expression. It searches down the list of

pairs, and evaluates the expression

associated with the first predicate that is

true. The final predicate can be the word

else.

31

Built-In Procedure - map

map - takes an function and a list. It applies the

function to each element of the list and returns the

resulting list.

Example:

(map (lambda (x) (* x 2)) '(1 2 3 4))

=> ‘(2 4 6 8)

32

Built-In Procedure - member

member (or memq) - takes an element and a list. It

searches the list and if it finds the element, it returns the

tail of the list beginning with that element. Otherwise it

returns #f

Example:

(member ‘a ‘(1 b a d 3)) => (a d 3)

(member ‘a ‘(1 b d 3)) => #f

33

Built-In Procedure - assoc

assoc - takes an element and a list of pairs. It looks

through the list and returns the first pair for which the

first element matches

Example:

(assoc ‘a ‘((c 4) (b 3) (a 5) (d 6)) => (a 5)

(assoc ‘(q2 0) ‘((q2 4) q3) ((q3 1) q2) ((q2 0) q5)) =>

((q2 0) q5)

(assoc ‘a ‘((c 4) (b 3)) => #f

34

Equality

= only for numbers.

equal? for any item

eq? most discriminating

Example:

(define a '(1 2 3))

(equal? a '(1 2 3)) => #t

(eq? a '(1 2 3)) => #f

35

Built-In Procedure - let
let - takes two arguments, a list of pairs and an
expression. Each pair in the first list consists of an
element and an expression. The 2nd argument of let
is evaluated using the constant assignments given
in the first argument. In other words, the variables
are bound by the let for the duration of the
expression.

Example:

(let (; first argument

(a 10)

(b 15)

)

(+ a b) ; second argument

)

36

Built-In Procedure - let
let - the initial values are computed and results are bound

to variables

let* - from left to right, compute initial value and bind to

variable, so earlier bindings can be used in later bindings

Example:

(let* ((a 2) (b 3) (c (+ a b)))

(begin

(display "c is ")

(display c)

(newline)

)

)

37

I/O Scheme Functions
I/O Scheme functions:

read – read one Scheme object from the standard

input and return it (thus, this is a function with a side

effect , a new constant exists in the environment)

(define x (read))

write – print a representation of its argument to

standard output so data could be read back in

(write (+ 3 5)) => 8

display – similar to write but datatypes are written as

raw bytes or characters (not meant to be written

back in)

38

Scheme Function read

read – read one Scheme object

Example:

(define x (read))

x

Returns ‘hello

39

Scheme Function read

read – read one Scheme object

Example:

(define x (read))

x

Returns ‘(a b c)

40

Scheme Function read-char

read-char – read a single character

Example:

(define x (read-char))

x

Returns #\(

41

Scheme Function read-line

read-line – read up to end of file

Example:

(define x (read-line))

x

Returns “Hello this is a whole line”

42

I/O Scheme File Functions
I/O Scheme functions:

open-input-file – as expected

Example: (open-input-file “table.csv”)

Example:

(read-line (open-input-file “table.csv”))

eof-object? – as expected

Example:

(if (eof-object? (read-line

(open-input-file “table.csv”)))

43

Ports

Have the usual ports – input, output and error

open-input-file – takes a string pathName, opens the file
for input and returns an input-port, or triggers
exn:fail:filesystem exception

open-output-file – similarly, but will create a file, so it
can’t already exist

close-input-port

close-output-port

custodian-shutdown-all

44

