

1

Concepts of Programming Languages, CSCI 305, Fall 2021

Bottom-Up Parsing, Oct. 25

Bottom-Up Parsing, Section 2.3, pages 87-96

Bottom-up parsing

• Collect input until a sequence that can be reduced with a symbol is found.

• Bottom-up parsing is also knows as shift-reduce parsing.

Called “shift-reduce” parsing because the actions in the cells of the table (LR parsers are

almost always table-driven) are shift, reduce and shift-reduce:

• sn, where s says to shift (push onto the stack) and n tells the state to be pushed

onto the stack with the state.

• rn, where r says to reduce and n tells what production to use in the reduction. The

top of the stack will hold the right-hand side of production n, and these items will

be popped. The left-hand side of production n, will eventually be pushed onto the

stack. For now it is saved in cur_sym. To avoid losing the last scanned symbol,

put it back into the input stream.

• bn, where b says to shift-reduce and n tells what production to use in the

reduction. The cur_sym, along with the top of the stack, holds the right-had side

of production n, and these will be popped. The left-had side of production n will

eventually be pushed onto the stack. For now it is saved in cur_sym.

Both top-down and bottom-up parsers use finite state machines and stacks. The stacks,

however, are used for different purposes.

Top-Down (LL) Bottom-Up (LR)

Stack holds what parser expects to see in

the future.

Stack holds what the parser has already

seen.

2

The left version of the grammar is good for LL and the right is good for LR:

Top-Down (LL) Bottom-Up (LR)

1. program → stmt_list $$

2. stmt_list → stmt stmt_list

3. stmt_list → ε

4. stmt → id := expr

5. stmt → read id

6. stmt → write expr

7. expr → term term_tail

8. term_tail → add_op term term_tail

9. term_tail → ε

10. term → factor factor_tail

11. factor_tail → mult_op factor factor_tail

12. factor_tail → ε

13. factor → (expr)

14. factor → id

15. factor → number

16. add_op → +

17. add_op → -

18. mult_op → *

19. mult_op → /

1. program → stmt_list $$

2. stmt_list → stmt_list stmt

3. stmt_list → stmt

4. stmt → id := expr

5. stmt → read id

6. stmt → write expr

7. expr → term

8. expr → expr add_op term

9. term → factor

10. term → term mult_op factor

11. factor → (expr)

12. factor → id

13. factor → number

14. add_op → +

15. add_op → -

16. mult_op → *

17. mult_op → /

A grammar is right-recursive if there is a nonterminal A such that A ⇒+ α A for some

alpha.

 Example (Figure 2.20, page 70):

1. id_list → id id_list_tail

2. id_list_tail → , id id_list_tail

3. id_list_tail → ;

Handle – symbols on the stack that represent the right part of a production, and will be

popped so the symbol on the left side of the reduction can be pushed.

