Concepts of Programming Languages, CSCI 305, Fall 2021
Bottom-Up Parsing, Oct. 25

Bottom-Up Parsing, Section 2.3, pages 87-96

Bottom-up parsing
e Collect input until a sequence that can be reduced with a symbol is found.
e Bottom-up parsing is also knows as shift-reduce parsing.

Called “shift-reduce” parsing because the actions in the cells of the table (LR parsers are
almost always table-driven) are shift, reduce and shift-reduce:
e sn, where s says to shift (push onto the stack) and n tells the state to be pushed

onto the stack with the state.

e rn, where r says to reduce and n tells what production to use in the reduction. The
top of the stack will hold the right-hand side of production n, and these items will
be popped. The left-hand side of production n, will eventually be pushed onto the
stack. For now it is saved in cur_sym. To avoid losing the last scanned symbol,

put it back into the input stream.

e bn, where b says to shift-reduce and n tells what production to use in the
reduction. The cur_sym, along with the top of the stack, holds the right-had side
of production n, and these will be popped. The left-had side of production n will
eventually be pushed onto the stack. For now it is saved in cur_sym.

Both top-down and bottom-up parsers use finite state machines and stacks. The stacks,

however, are used for different purposes.

Top-Down (LL)

Bottom-Up (LR)

Stack holds what parser expects to see in

the future.

Stack holds what the parser has already

Seen.




The left version of the grammar is good for LL and the right is good for LR:

Top-Down (LL)

Bottom-Up (LR)

o gk wnE

7.
8.

9.

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.

program — stmt_list $$
stmt_list — stmt stmt_list
stmt_list — ¢

stmt — id := expr

stmt — read id

stmt — write expr

expr — term term_tail

term_tail — add_op term term_tail
term_tail — ¢

term — factor factor tail

factor_tail — mult_op factor factor _tail
factor tail — ¢

factor — (expr)
factor — id
factor — number
add op — +

add op — -
mult op — *
mult op —/

N O~ wWwDdE

10.

11.
12.
13.
14.
15.
16.
17.

program — stmt list $$
stmt_list — stmt_list stmt
stmt_list — stmt

stmt — id := expr

stmt — read id

stmt — write expr
expr — term
expr — expr add_op term

term — factor

term — term mult_op factor

factor — (expr)
factor — id
factor — number
add op — +

add op — -
mult op — *
mult op — /

A grammar is right-recursive if there is a nonterminal A such that A =" o A for some
alpha.

Example (Figure 2.20, page 70):

1. id list — idid_Iist_tail
2. id_list_tail — , id id_list_tail

3. id_list tail — ;

Handle — symbols on the stack that represent the right part of a production, and will be
popped so the symbol on the left side of the reduction can be pushed.




