
Chapter 8 – Stacks

1996

1998

1982

1995

BYU CS/ECEn 124 Chapter 8 - Stacks 2

Topics to Cover…

� The Stack

� Subroutines

� Subroutine Linkage

� Saving Registers

� Stack Operations

� Activation Records
� Example 8.1: Activation Records

� Recursive Subroutines

� Interrupt Stack Usage

BYU CS/ECEn 124 Chapter 8 - Stacks 3

Levels of Transformation

Problems

Algorithms

Language (Program)

Machine (ISA) Architecture

Microarchitecture

Circuits

Devices

Programmable

Computer Specific

Manufacturer Specific

BYU CS/ECEn 124 Chapter 8 - Stacks 4

Stacks

� Stacks are the fundamental data structure of

computers today.

� A stack is a Last In, First Out (LIFO) abstract data

structure.

� A true stack is a restricted data structure with two

fundamental operations, namely push and pop.

� Elements are removed from a stack in the reverse

order of their addition.

� Memory stacks are used for random access of

local variables.

The Stack

BYU CS/ECEn 124 Chapter 8 - Stacks 5

MSP430 Stack

� Hardware support for stack

� Register R1 – Stack Pointer (SP)

� Initialized to highest address of available RAM

� MSP430G2553 � 0x0400 (512 bytes)

� MSP430F2274 � 0x0600 (1k bytes)

� Stack grows down towards lower memory addresses.

� Initialize stack pointer at beginning of program

STACK .equ 0x0400 ; top of stack

start: mov.w #STACK,SP ; initialize stack pointer

The Stack

BYU CS/ECEn 124 Chapter 8 - Stacks 6

MSP430 Stack

� The MSP430 stack is a word structure
� Elements of the stack are 16-bit words.

� The LSB of the Stack Pointer (SP) is always 0.

� The SP points to the last word added to the stack (TOS).

� The stack pointer is used by
� PUSH – put a value on the stack

� POP – retrieve a value off the stack

� CALL – put a return address on the stack

� RET – retrieve a return address off the stack

� RETI – retrieve a return address and status register

off the stack

� Interrupts – put a return address and status register

on the stack

The Stack

BYU CS/ECEn 124 Chapter 8 - Stacks 7

Computer Memory – Up or Down?

x0000

xFFFF

Up

Down

xFFFF

x0000

Down

Up

The Stack

1996

1998

1982
1995

BYU CS/ECEn 124 Chapter 8 - Stacks 8

Implementing Stacks in Memory

� Unlike a coin stack, in a memory stack, the data does not

move in memory, just the pointer to the top of stack.

/ / / /

/ / / /

/ / / /

/ / / /

/ / / /

TOP

Current SP

X0280 R1

x0282

x0280

x027E

x027C

x027A

/ / / /

/ / / /

#18

/ / / /

/ / / /

TOP

x0282

x0280

x027E

x027C

x027A

Current SP

x027E R1

Push #0x0018

/ / / /

/ / / /

#18

#25

#58

TOP

x0282

x0280

x027E

x027C

x027A

Current SP

x027C R1

Pop R15

#58 -> R15

/ / / /

/ / / /

#18

#25

#58 TOP

x0282

x0280

x027E

x027C

x027A

Current SP

x027A R1

Push #0x0025
Push #0x0058

/ / / /

/ / / /

#18

#25

#36 TOP

x0282

x0280

x027E

x027C

x027A

Current SP

x027A R1

Push #0036

The Stack

BYU CS/ECEn 124 Chapter 8 - Stacks 9

Quiz 8.1

1. What is the value of the stack pointer after the second
call to delay?

2. Is there a problem with the program?

start: mov.w #0x0400,SP

mov.w #WDTPW+WDTHOLD,&WDTCTL

bis.b #0x01,&P1DIR ; P1.0 as output

mainloop: bis.b #0x01,&P1OUT ; turn on LED

push #1000

call #delay

bic.b #0x01,&P1OUT ; turn off led

call #delay

jmp mainloop

delay: mov.w 2(sp),r15 ; get delay counter

delaylp2: dec.w r15 ; delay over?

jnz delaylp2 ; n

ret ; y

.sect ".reset" ; reset Vector

.word start ; start address

.end

BYU CS/ECEn 124 Chapter 8 - Stacks 10

Subroutines

� A subroutine is a program fragment that performs
some useful function.
� Subroutines help to organize a program.

� Subroutines should have strong cohesion – perform
only one specific task.

� Subroutines should be loosely coupled – interfaced
only through parameters (where possible) and be
independent of the remaining code.

� Subroutines keep the program smaller
� Smaller programs are easier to maintain.

� Reduces development costs while increasing reliability.

� Fewer bugs – copying code repeats bugs.

� Subroutines are often collected into libraries.

Subroutines

BYU CS/ECEn 124 Chapter 8 - Stacks 11

The Call / Return Mechanism

Subroutines

Smaller programs.
Easier to maintain.
Reduces development costs.
Increased reliability.
Fewer bugs do to copying code.
More library friendly.

Faster programs.
Less overhead.

BYU CS/ECEn 124 Chapter 8 - Stacks 12

Subroutine Linkage

� A subroutine is “called” in assembly using the MSP430

CALL instruction.

� The address of the next instruction after the subroutine call

is saved by the processor on the stack.

� Parameters are passed to the subroutine in registers

and/or on the stack.

� Local variables are created on the stack at the beginning

of the subroutine and popped from the stack just before

returning from the subroutine.

� At the end of a subroutine, a RET instruction “pops” the top

value from the stack into the program counter.

Subroutine Linkage

BYU CS/ECEn 124 Chapter 8 - Stacks 13

Stack Operations

� Single operand instructions:

� Emulated instructions:

Mnemonic Operation Description

PUSH(.B or .W) src SP-2→→→→SP, src→→→→@SP Push byte/word source on stack

CALL dst dst→→→→tmp ,SP-2→→→→SP,
PC→→→→@SP, tmp→→→→PC

Subroutine call to destination

RETI TOS→→→→SR, SP+2→→→→SP
TOS→→→→PC, SP+2→→→→SP

Return from interrupt

Mnemonic Operation Emulation Description

RET @SP→→→→PC
SP+2→→→→SP

MOV @SP+,PC Return from subroutine

POP(.B or .W) dst @SP→→→→temp
SP+2→→→→SP
temp→→→→dst

MOV(.B or .W) @SP+,dst Pop byte/word from stack to
destination

Subroutine Linkage

func

Memory

BYU CS/ECEn 124 Chapter 8 - Stacks 14

Call

Registers

CPU

Call Instruction

call #func ; M(--sp) = PC; PC = M(func)

PC
PC
PC

IR0x12b0
0x12b0

fffe

SP

SP

0x4130PC

ALU

ADDER

PC
SP0x801e

+2+2

BYU CS/ECEn 124 Chapter 8 - Stacks 15

Subroutine Call

� CALL Subroutine

� Syntax CALL dst

� Operation dst → tmp
(SP−2) → SP
PC → @SP
tmp → PC

� Description A subroutine call is made to an address anywhere in
the 64K address space. All addressing modes can
be used. The return address (the address of the
following instruction) is stored on the stack. The call
instruction is a word instruction.

� Status Bits Status bits are not affected.

� Example

Subroutine Linkage

BYU CS/ECEn 124 Chapter 8 - Stacks 16

CALL Examples

� CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; @PC+ → tmp, SP−2 → SP, PC → @SP, tmp → PC

� CALL EXEC ; Call on the address contained in EXEC

; X(PC)→tmp, PC+2→PC, SP−2→SP, PC→@SP, tmp→PC

� CALL &EXEC ; Call on the address contained in absolute address EXEC

; X(0)→tmp, PC+2→PC, SP−2→SP, PC→@SP, tmp→PC

� CALL R5 ; Call on the address contained in R5

; R5→tmp, SP−2→SP, PC→@SP, tmp→PC

� CALL @R5 ; Call on the address contained in the word pointed to by R5

; @R5→tmp, SP−2→SP, PC→@SP, tmp→PC

� CALL @R5+ ; Call on the address contained in the word pointed to by R5
; and increment pointer in R5.

; @R5+→tmp, SP−2→SP, PC→@SP, tmp→PC

� CALL X(R5) ; Call on the address contained in the address pointed to by
; R5 + X (e.g. table with address starting at X)

; X can be an address or a label

; X(R5)→tmp, PC+2→PC, SP−2→SP, PC→@SP, tmp→PC

Subroutine Linkage

BYU CS/ECEn 124 Chapter 8 - Stacks 17

Caution…

� The destination of branches and calls is used indirectly,
and this means the content of the destination is used as
the address.

� Errors occur often when confusing symbolic and
absolute modes:
� CALL MAIN ; Subroutine’s address is stored in MAIN

� CALL #MAIN ; Subroutine starts at address MAIN

� The real behavior is easily seen when looking to the
branch instruction. It is an emulated instruction using the
MOV instruction:
� BR MAIN ; Emulated instruction BR

� MOV MAIN,PC ; Emulation by MOV instruction

� The addressing for the CALL instruction is exactly the
same as for the BR instruction.

Subroutine Linkage

Memory

BYU CS/ECEn 124 Chapter 8 - Stacks 18

Return

Registers

ALU

CPU

ADDER

Return Instruction

ret ; mov.w @sp+,PC

0x801e

PC

IR
0x12b0

0002

SP

0x4130

0x4130
PC
PC

PC

SP
SP

PC
SP
PC

+2

BYU CS/ECEn 124 Chapter 8 - Stacks 19

Return from Subroutine

� RET Return from subroutine

� Syntax RET

� Operation @SP→ PC
SP + 2 → SP

� Emulation MOV @SP+,PC

� Description The return address pushed onto the stack by a CALL
instruction is moved to the program counter. The
program continues at the code address following the
subroutine call.

� Status Bits Status bits are not affected.

� Example

Subroutine Linkage

BYU CS/ECEn 124 Chapter 8 - Stacks 20

Quiz 8.2

1. What is wrong (if anything) with the following code?

2. How many times will delay be called for each loop?

3. How long will myDelay delay?

loop: call #myDelay

jmp loop

myDelay: mov.w #0,r15

call #delay

call #delay

delay: sub.w #1,r15

jne delay

ret

BYU CS/ECEn 124 Chapter 8 - Stacks 21

Saving and Restoring Registers

� Called routine -- “callee-save”

� At beginning of subroutine, save all registers that will be
altered (unless a register is used to return a value to the
calling program or is a scratch register!)

� Before returning, restore saved registers in reverse order.

� Or, avoid using registers altogether.

� Calling routine -- “caller-save”

� If registers need to be preserved across subroutine calls,
the calling program would save those registers before
calling routine and restore upon returning from routine.

� Obviously, avoiding the use of registers altogether would be
considered caller-safe.

� Values are saved by storing them in memory,
preferably on the stack.

Saving Registers

BYU CS/ECEn 124 Chapter 8 - Stacks 22

Caller-Save vs. Callee-Save

call subroutine

Save Registers

subroutine

Restore Registers

call subroutine subroutine

Save Registers

Restore Registers

Saving Registers

BYU CS/ECEn 124 Chapter 8 - Stacks 23

Stack Operations

� Single operand instructions:

� Emulated instructions:

Mnemonic Operation Description

PUSH(.B or .W) src SP-2→→→→SP, src→→→→@SP Push byte/word source on stack

CALL dst dst→→→→tmp ,SP-2→→→→SP,
PC→→→→@SP, tmp→→→→PC

Subroutine call to destination

RETI TOS→→→→SR, SP+2→→→→SP
TOS→→→→PC, SP+2→→→→SP

Return from interrupt

Mnemonic Operation Emulation Description

RET @SP→→→→PC
SP+2→→→→SP

MOV @SP+,PC Return from subroutine

POP(.B or .W) dst @SP→→→→temp
SP+2→→→→SP
temp→→→→dst

MOV(.B or .W) @SP+,dst Pop byte/word from stack to
destination

Stack Operations

Memory

BYU CS/ECEn 124 Chapter 8 - Stacks 24

Push

Registers

Data Bus (+1 cycle)

CPU

Push Instruction

cnt

push.w cnt ; M(--sp) = M(cnt)

0x000c

PC
PC
PC

IR0x1210
0x1210

PC
fffe

SP
SP

0xa5a5

0xa5a5
ALU

ADDER

SP

+2+2

BYU CS/ECEn 124 Chapter 8 - Stacks 25

Push Operand

� PUSH Push word or byte onto stack

� Syntax PUSH{.W or .B} src

� Operation SP − 2 → SP
src → @SP

� Description The stack pointer is decremented by two, then
the source operand is moved to the RAM word
addressed by the stack pointer (TOS).

� Status Bits Status bits are not affected.

� Example PUSH SR ; save SR

PUSH R8 ; save R8

PUSH.B &TCDAT ; save data at address

; TCDAT onto stack

Note: The system stack pointer (SP) is always decremented by two,
independent of the byte suffix.

Stack Operations

BYU CS/ECEn 124 Chapter 8 - Stacks 26

Pop Operand

� POP Pop word or byte from stack to destination

� Syntax POP{.W or .B} dst

� Operation @SP −> temp
SP + 2 −> SP
temp −> dst

� Emulation MOV{.W or .B} @SP+,dst

� Description The stack location pointed to by the stack
pointer (TOS) is moved to the destination. The
stack pointer is incremented by two afterwards.

� Status Bits Status bits are not affected.

� Example POP R7 ; Restore R7

POP.B LEO ; The low byte of the stack is
; moved to LEO.

Note: The system stack pointer (SP) is always incremented by two,
independent of the byte suffix.

Stack Operations

SP

r15

r14

0xf826

SP

BYU CS/ECEn 124 Chapter 8 - Stacks 27

Stack Operations

Subroutine Linkage

0xf820: ...
0xf822: call #subroutine
0xf826: ...

subroutine:
0xf852: push r15
0xf854: push r14

...

0xf882: pop r14
0xf884: pop r15
0xf886: ret

0400:

03fe:

03fc:

03fa:

03f8:

03f6:

03f4:

03f2:

Unprotected!

0xf826 SP

r15

0xf826

SPr15

r14

0xf826 SP
r15

r14

0xf826

SP

r14

r15

0xf826

SPr14

r15

0xf826

SP

BYU CS/ECEn 124 Chapter 8 - Stacks 28

Activation Records

� A subroutine is activated when called and an activation

record is allocated (pushed) on the stack.

� An activation record is a template of the relative positions

of local variables on the stack as defined by the

subroutine.
� Return address
� Memory for local subroutine variables
� Parameters passed to subroutine from caller
� Saved registers used in subroutine (callee-save)

� A new activation record is created on the stack for each

invocation of a subroutine or function.

� A frame pointer indicates the start of the activation record.

� When the subroutine ends and returns control to the

caller, the activation record is discarded (popped).

Activation Records

BYU CS/ECEn 124 Chapter 8 - Stacks 29

.cdecls C,"msp430.h" ; MSP430
DELAY .equ (50/8)

.text ; beginning of code
reset: mov.w #0x0400,SP ; init stack pointer

mov.w #WDTPW+WDTHOLD,&WDTCTL ; stop WDT
bis.b #0x01,&P1DIR ; set P1.0 as output

mainloop: xor.b #0x01,&P1OUT ; toggle P1.0
push.w #DELAY ; pass delay count on stack
call #delay ; call delay subroutine
jmp mainloop

; delay subroutine: stack usage 4| DELAY | \
; 2| ret | subroutine frame (6 bytes)
; (SP) => 0| r15 | /
delay: push.w r15 ; callee-save

mov.w #0,r15 ; use R15 as inner counter

delay02: dec.w r15 ; inner delay over?
jne delay02 ; n

dec.w 4(SP) ; y, outer done?
jne delay02 ; n

pop.w r15 ; y, restore register(s)
mov.w @SP+,0(SP) ; pop input delay count
ret ; return from subroutine

.sect ".reset" ; MSP430 reset Vector

.word reset ; start address

.end

Example 8.1: Activation Record

Delay Activation Record:
4(SP) = delay count
2(SP) = return address
0(SP) = r15

Activation Records

Stack:
2(SP) = delay count
0(SP) = return address

Stack:
0(SP) = return address

Stack:
(emply)

BYU CS/ECEn 124 Chapter 8 - Stacks 30

Quiz 8.3

Change the following code to use a callee-save,
loosely coupled, cohesive subroutine.
.cdecls C,"msp430.h"
.text

start: mov.w #0x0400,SP
mov.w #WDTPW+WDTHOLD,&WDTCTL
bis.b #0x01,&P1DIR ; P1.0 as output

mainloop: bis.b #0x01,&P1OUT ; turn on LED
mov.w #10000,r15 ; delay counter

delaylp1: dec.w r15 ; delay over?
jnz delaylp1 ; n

bic.b #0x01,&P1OUT ; turn off led
mov.w #0,r15 ; delay counter

delaylp2: dec.w r15 ; delay over?
jnz delaylp2 ; n

mov.w #0,r15 ; delay counter

delaylp3: dec.w r15 ; delay over?
jnz delaylp3 ; n

jmp mainloop ; y, toggle led

.sect ".reset" ; reset vector

.word start ; start address

.end

BYU CS/ECEn 124 Chapter 8 - Stacks 31

Recursive Subroutine

� A subroutine that makes a call to itself is said to be a

recursive subroutine.

� Recursion allows direct implementation of functions

defined by mathematical induction and recursive divide

and conquer algorithms

� Factorial, Fibonacci, summation, data analysis

� Tree traversal, binary search

� Recursion solves a big problem by solving one or more

smaller problems, and using the solutions of the smaller

problems, to solve the bigger problem.

� Reduces duplication of code.

� MUST USE STACK!

Recursive Subroutines

BYU CS/ECEn 124 Chapter 8 - Stacks 32

Interrupts

� Execution of a program normally proceeds predictably,
with interrupts being the exception.

� An interrupt is an asynchronous signal indicating
something needs attention.

� Some event has occurred

� Some event has completed

� The processing of an interrupt subroutine uses the stack.

� Processor stops with it is doing,

� stores enough information on the stack to later resume,

� executes an interrupt service routine (ISR),

� restores saved information from stack (RETI),

� and then resumes execution at the point where the
processor was executing before the interrupt.

Interrupts

BYU CS/ECEn 124 Chapter 8 - Stacks 33

Interrupt Stack

Interrupts

Execute Interrupt Service Routine (ISR)

Item 2
Item 1

Prior to InterruptSP

add.w r4,r7

jnc $+4

add.w #1,r6

add.w r5,r6

PC

Interrupt (hardware)
� Program Counter pushed on stack

� Status Register pushed on stack

� Interrupt vector moved to PC

� Further interrupts disabled

� Interrupt flag cleared

SR

PC

Item 2

Item 1

SP xor.b #1,&P1OUT

reti
PC

Return from Interrupt (reti)
� Status Register popped from stack

� Program Counter popped from stackSR

PC

Item 2

Item 1

SP
add.w r4,r7

jnc $+4

add.w #1,r6

add.w r5,r6

PC

BYU CS/ECEn 124 Chapter 8 - Stacks 34

