
One Bit at a Time…..

said the first I.T. guy ever

CSCI 255

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

Apcast.com: java-basics-BitsBytes-CensusMachine.jpg

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• What is a bit (or logical) operation?

Is a Boolean procedure between two binary values;

in where, each binary value consists of a single or more bits

• What is a Boolean procedure?

Derived from George Boole.

Boolean is the data type on binary values: on/off, true/false,…discrete

Boolean procedures are how the binary values are evaluated through

logical expressions

Without him….

there wouldn’t be any

Apple stores

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• The Big 3: The basic logical operators/expressions:

AND => Can something be true AND false?

OR => To Be OR Not To Be…

NOT => What is something that is NOT true?

• The logic is derived from plain language to come up with the logical answer

• This is applied to Binary values (voltage values) to work in digital circuits

• Therefore, digital logic => revolution

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• How do the logical operators work?

Let’s take a plain English sentence:

“There are apples and oranges in each basket”

If a customer checks one basket and sees only apples…and

if we assigned:

• Zero/False/off = Not in the basket

• One/True/on = In the basket

, then:

Apples = 1, Oranges = 0

; therefore, the expression for the customer checking that one basket is:

1 AND 0 = False

In conclusion, the above statement is False

There aren’t any oranges in that one basket

There are apples in that one basket

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

Identical sentence:

“There are apples or oranges in each basket”

Customer checks one basket and sees only oranges this time

• Zero/False/off = Not in the basket

• One/True/on = In the basket

, then:

Apples = 0, Oranges = 1

; therefore, the expression for the customer checking that one basket is:

0 OR 1 = True

In conclusion, the above statement is True

There are oranges in that one basket

There aren’t any apples in that one basket

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

The AND-logic:

• The AND operator is used by comparing two values…..

so there are four different outcomes:

Scenario The logic Outcome Logic expression

False AND False Something is false and

false

Then, it is false 0 • 0 = 0

False AND True Something is false and

true

Then, it is false 0 • 1 = 0

True AND False Something is true and

false

Then, it is false 1 • 0 = 0

True AND True Something is true and

true

Then, it is true 1 • 1 = 0

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

The OR-logic:

• The OR operator is used by comparing two values…..

so there are four different outcomes:

Scenario The logic Outcome Logic expression

False OR False Something is false or

false

Then, it is false 0 + 0 = 0

False OR True Something is false or

true

Then, it is true 0 + 1 = 1

True OR False Something is true or

false

Then, it is true 1 + 0 = 1

True OR True Something is true or

true

Then, it is true 1 + 1 = 1

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

The NOT-logic:

• The NOT operator is used by on a single value…..

so there are two different outcomes:

• If you double NOT a single bit – the NOTs cancel out!!

• In combining the 3 logic operators, logical expressions represent the decision

process of a circuit/program/computers/embedded systems/etc…

Scenario The logic Outcome Logic expression

NOT False Something is not false Then, it is true 0 � 1

NOT True Something is not true Then, it is false 1 � 0

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

A simple logical expression:

1 � 1 � 1 • 0 • 1 • 0 � 1 � 0 • 1 • 0

1 � 0 • 0 • 1 � 0 • 1

1 � 0 • 1 � 0

1 � 0 � 0

1 � 0

1

Remember precedence:

1. Perform operations in parenthesis

2. Compliments (NOTs)

3. “Divide/Multiply” (ANDs)

4. “Add/Subtract” (ORs)

Therefore, the logical expression is TRUE

• The “+”s are ORs, not addition operations

• The “•”s are ANDs, not multiplication operations

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

There’s a faster way using same expression:

1 � 1 � 1 • 0 • 1 • 0 � 1 � 0 • 1 • 0

1 � ���	
���	���	
��	0	��	1�

1

the logical expression is always TRUE

You don’t need to evaluate the whole

thing if the “1” is OR-ed with any of the

two binary values….it will always outcome

to “1”

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• Although ones and zeros on a logical expression can be reduced to a single

outcome, the more complex (most useful) logical expression consists of

variables

• Logical expressions with variables describe digital connections within a circuit

• Example of logical expression with variables may look like:

(X + Y)•Z+(W•Y)

, in where each variable (W, X, Y, Z) can have the binary value 0 or 1

• In order to evaluate this type of logical expression, Boolean algebra is used.

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• In Boolean algebra, theorems were formed in order to better evaluate

logical expression.

• Example of simple theorem:

X • 1

X • 1 = X

Theorem 1D

When X = 0:

0 • 1 = 0

When X = 1:

1 • 1 = 1

Outcome always equals to the value of X

in both instances; therefore:

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• Depending on the literature, different notations can be found:

• The logic NOT is A.K.A the COMPLEMENT.

• Some of the notations are:

� � �′

• The logic AND can also have notations as:

�	 • � • 	� � ���

�	 • � • 	� � � �� � ��� Theorem 7D

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

DeMorgan’s Theorem (12 & 12D) vs Duality Theorem (13 & 13D)

• DeMorgan’s states (in my own words):

When you complement the expression within a parenthesis, each variable

is complemented; as well as, the logical operation between variables.

• Duality states (in my own words):

When you complement the expression within a parenthesis, each variable

is not complemented; however, the logical operation between variables is

complemented.

Meaning:

• The complement of an OR is an AND

• The complement of an AND is an OR

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

Let’s see an example of reducing a logical expression with variables:

����� � ��� � ����′

����� � �� � � ���

����� � �� � � �

����� � ��� � ��′

Apply Theorem 8: X = D’, Y=C & Z=BC’

Apply Theorem 11D: X = B, Y=C & Y’=C’

Apply Theorem 8 once more

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• Previously mentioned, the logical expression describes digital

connections within a digital circuit.

• Digital circuitry diagrams consists of symbols (components/gates) that

describe functionality/response/decision within its paths.

• A digital circuit diagram may look like this:

Output pins

Gates

Input pins

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• The big 3 have digital gate representation: First the AND

• We represent the AND-operation with the AND-Gate symbol:

• With it’s Truth Table:

X

Y
Output = X • Y

AND-GATE

INPUT 1 (X-value) INPUT 2 (Y-value) OUTPUT (x AND y)

0 0 0

0 1 0

1 0 0

1 1 1

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• We represent the OR-operation with the OR-Gate symbol:

• With it’s Truth Table:

X

Y

Output = X + Y

OR-GATE

INPUT 1 (X-value) INPUT 2 (Y-value) OUTPUT (x OR y)

0 0 0

0 1 1

1 0 1

1 1 1

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• We represent the NOT-operation with the NOT-Gate (INVERTER) symbol:

• With it’s Truth Table:

X Output = �

NOT-GATE

INPUT (X-value) OUTPUT (NOT x)

0 1

1 0

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

Therefore, when a logical expression is used:

� � ����� � ��� � ����′

It can be integrated as logical digital circuit that looks like:

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

However by using the Theorems, the expression was reduced:

� � ����� � ��� � ��′

Which make the circuit change to:

B i t O p e r a t i o n s

D a m i a n V a l l e s , P h D - C o m p u t e r S c i e n c e – M o n t a n a T e c h

• It is very important and useful to reduce the logic to its minimum expression

• The less number of variables in the expression translates to:

� Less number of wires for connections

� Less number of inputs to the gates

� Less bits of information to compute

� More power friendly to the overall digital circuit

