Bit Operations

One Bit at a Time..... said the first I.T. guy ever

CSCI 255

Apcast.com: java-basics-BitsBytes-CensusMachine.jpg

- What is a bit (or logical) operation?

Is a Boolean procedure between two binary values; in where, each binary value consists of a single or more bits

- What is a Boolean procedure?

Derived from George Boole.
Boolean is the data type on binary values: on/off, true/false,...discrete Boolean procedures are how the binary values are evaluated through logical expressions

Without him....
there wouldn't be any
Apple stores

- The Big 3: The basic logical operators/expressions:

AND => Can something be true AND false?
OR => To Be OR Not To Be...
NOT => What is something that is NOT true?

- The logic is derived from plain language to come up with the logical answer
- This is applied to Binary values (voltage values) to work in digital circuits
- Therefore, digital logic => revolution

Bit Operations

- How do the logical operators work?

Let's take a plain English sentence:
"There are apples and oranges in each basket"

If a customer checks one basket and sees only apples...and if we assigned:

- Zero/False/off = Not in the basket
- One/True/on = In the basket
, then:
Apples $=1$, Oranges $=0$
; therefore, the expression for the customer checking that one basket is:
There are apples in that one basket
1 AND 0 = False
There aren't any oranges in that one basket
In conclusion, the above statement is False

Identical sentence:
"There are apples or oranges in each basket"
Customer checks one basket and sees only oranges this time

- Zero/False/off = Not in the basket
- One/True/on = In the basket
, then:
Apples $=0$, Oranges $=1$
; therefore, the expression for the customer checking that one basket is:
There aren't any apples in that one basket
O OR 1 = True
There are oranges in that one basket

In conclusion, the above statement is True

The AND-logic:

- The AND operator is used by comparing two values..... so there are four different outcomes:

Scenario	The logic	Outcome	Logic expression
False AND False	Something is false and false	Then, it is false	$0 \bullet 0=0$
False AND True	Something is false and true	Then, it is false	$0 \bullet 1=0$
True AND False	Something is true and false	Then, it is false	$1 \bullet 0=0$
True AND True	Something is true and true	Then, it is true	$1 \bullet 1=0$

Bit Operations

The OR-logic:

- The OR operator is used by comparing two values..... so there are four different outcomes:

Scenario	The logic	Outcome	Logic expression
False OR False	Something is false or false	Then, it is false	$0+0=0$
False OR True	Something is false or true	Then, it is true	$0+1=1$
True OR False	Something is true or false	Then, it is true	$1+0=1$
True OR True	Something is true or true	Then, it is true	$1+1=1$

The NOT-logic:

- The NOT operator is used by on a single value..... so there are two different outcomes:

Scenario	The logic	Outcome	Logic expression
NOT False	Something is not false	Then, it is true	$\overline{0}=1$
NOT True	Something is not true	Then, it is false	$\overline{1}=0$

- If you double NOT a single bit - the NOTs cancel out!!
- In combining the 3 logic operators, logical expressions represent the decision process of a circuit/program/computers/embedded systems/etc...

Bit Operations

A simple logical expression:

Bit Operations

There's a faster way using same expression:

> You don't need to evaluate the whole thing if the " 1 " is OR-ed with any of the two binary values....it will always outcome to "1"

- Although ones and zeros on a logical expression can be reduced to a single outcome, the more complex (most useful) logical expression consists of variables
- Logical expressions with variables describe digital connections within a circuit
- Example of logical expression with variables may look like:

$$
(X+Y) \bullet Z+(W \cdot Y)
$$

, in where each variable ($\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) can have the binary value 0 or 1

- In order to evaluate this type of logical expression, Boolean algebra is used.

Bit Operations

- In Boolean algebra, theorems were formed in order to better evaluate logical expression.
- Example of simple theorem:

$$
X \cdot 1 \quad \text { Theorem 1D }
$$

```
When X = 0:
    0}\cdot1=
When X = 1:
    1 - 1 = 1
Outcome always equals to the value of X
in both instances; therefore:
```

$$
X \cdot 1=X
$$

Bit Operations

- Depending on the literature, different notations can be found:
- The logic NOT is A.K.A the COMPLEMENT.
- Some of the notations are:

$$
\bar{X}=X^{\prime}
$$

- The logic AND can also have notations as:

$$
\begin{gathered}
X \bullet Y \bullet Z=X Y Z \\
X \bullet(Y \bullet Z)=X(Y Z)=X Y Z \quad \text { Theorem } 7 \mathrm{D}
\end{gathered}
$$

Bit Operations

DeMorgan's Theorem (12 \& 12D) vs Duality Theorem (13 \& 13D)

- DeMorgan's states (in my own words):

When you complement the expression within a parenthesis, each variable is complemented; as well as, the logical operation between variables.

- Duality states (in my own words):

When you complement the expression within a parenthesis, each variable is not complemented; however, the logical operation between variables is complemented.

Meaning:

- The complement of an OR is an AND
- The complement of an AND is an OR

Bit Operations

Let's see an example of reducing a logical expression with variables:

- Previously mentioned, the logical expression describes digital connections within a digital circuit.
- Digital circuitry diagrams consists of symbols (components/gates) that describe functionality/response/decision within its paths.
- A digital circuit diagram may look like this:

Bit Operations

- The big 3 have digital gate representation: First the AND
- We represent the AND-operation with the AND-Gate symbol:

- With it's Truth Table:

INPUT 1 (X-value)	INPUT 2 (Y-value)	OUTPUT (x AND y)
0	0	0
0	1	0
1	0	0
1	1	1

Bit Operations

- We represent the OR-operation with the OR-Gate symbol:

- With it's Truth Table:

INPUT 1 (X-value)	INPUT 2 (Y-value)	OUTPUT (x OR y)
0	0	0
0	1	1
1	0	1
1	1	1

Bit Operations
|

- We represent the NOT-operation with the NOT-Gate (INVERTER) symbol:

- With it's Truth Table:

INPUT (X-value)	OUTPUT (NOT x)
0	1
1	0

Bit Operations

Therefore, when a logical expression is used:

$$
F=A B^{\prime} C^{\prime}+C D^{\prime}+B C^{\prime} D^{\prime}
$$

It can be integrated as logical digital circuit that looks like:

Bit Operations

However by using the Theorems, the expression was reduced:

$$
F=A B^{\prime} C^{\prime}+C D^{\prime}+B D^{\prime}
$$

Which make the circuit change to:

- It is very important and useful to reduce the logic to its minimum expression
- The less number of variables in the expression translates to:
- Less number of wires for connections
- Less number of inputs to the gates
- Less bits of information to compute
- More power friendly to the overall digital circuit

