Bit Operations

One Bit at a Time.....
said the first I.T. guy ever

CSCI 255

0
KD

s o -

- .
. o -
.....

""""
o » & 4

.
- - -
..........
. - . .
........

-
-
- -
-
- a® * o o
- -® -

Bit Operations

 Whatis a bit (or logical) operation?

Is a Boolean procedure between two binary values;
in where, each binary value consists of a single or more bits

 What is a Boolean procedure?

Derived from George Boole.
Boolean is the data type on binary values: on/off, true/false,...discrete
Boolean procedures are how the binary values are evaluated through
logical expressions

MONTANA TECH

&)

Bit Operations

* The Big 3: The basic logical operators/expressions:

AND => Can something be true AND false?
OR => To Be OR Not To Be...
NOT => What is something that is NOT true?

 The logic is derived from plain language to come up with the logical answer
* This is applied to Binary values (voltage values) to work in digital circuits
» Therefore, digital logic => revolution

L HOoewey

PHONOGRAPH REEL TO REEL LP's 8-TRACK’s CASSETTE's CD's MP3’s

Bit Operations

* How do the logical operators work?
Let’s take a plain English sentence:

“There are apples and oranges in each basket”

If a customer checks one basket and sees only apples...and
if we assigned:

o Zero/False/off = Not in the basket

* One/True/on = In the basket

, then:

Apples =1, Oranges =0

; therefore, the expression for the customer checking that one basket is:

There are apples in that one basket

1 AND O = False There aren’t any oranges in that one basket |
m— In conclusion, the above statement is False |

o enc

Bit Operations

Identical sentence:
“There are apples or oranges in each basket”

Customer checks one basket and sees only oranges this time
e Zero/False/off = Not in the basket

* One/True/on = In the basket

, then:

Apples =0, Oranges =1

; therefore, the expression for the customer checking that one basket is:

There aren’t any apples in that one basket

OOR1=True There are oranges in that one basket

In conclusion, the above statement is True

Bit Operations

The AND-logic:

 The AND operator is used by comparing two values.....
so there are four different outcomes:

False AND False Something is false and Then, it is false
false

False AND True Something is false and Then, it is false

true

True AND False Something is true and Then, it is false
false

True AND True Something is true and Then, it is true

true

0¢0=0
0e1=0
1¢0=0
1e1=0

Bit Operations

The OR-logic:

so there are four different outcomes:

False OR False =~ Something is false or
false

False OR True Something is false or
true

True OR False Something is true or
false

True OR True Something is true or
true

* The OR operator is used by comparing two values.....

Then, it is false

Then, it is true

Then, it is true

Then, it is true

0+0=0
O+1=1
1+0=1
1+1=1

Bit Operations

The NOT-logic:

The NOT operator is used by on a single value
so there are two different outcomes:

NOT False Something is not false Then, it is true

=] Ol
[l |
o K

NOT True Something is not true Then, it is false

If you double NOT a single bit — the NOTs cancel out!!

In combining the 3 logic operators, logical expressions represent the decision
process of a circuit/program/computers/embedded systems/etc...

Bit Operations

A simple logical expression:

1+1)+ 1 0\(0 o 1? o l(0 + 1,) +(0el)e 0 Remember precedence:

1. Perform operations in parenthesis

2. Compliments (NOTSs)
3. “Divide/Multiply” (ANDs)
4. “Add/Subtract” (ORs)

N

(1) +0+(0)+ (1) +(0) = 1
Y}
/

(1) +0e(1)+0

The “+”s are ORs, not addition operations

/{

The “o”s are ANDs, not multiplication operations

1 Therefore, the logical expression is TRUE

MONTANA TECH

&)

Bit Operations

There’s a faster way using same expression:

§1+1,)+\I-(0-1)-(0+1)+(0-1)-6,

Y
\ l You don’t need to evaluate the whole
. . thing if the “1” is OR-ed with any of the
(1) + Anything (either 0 or 1) - .

two binary values....it will always outcome
to lllll

1

the logical expression is always TRUE

MONTANA TECH

&)

Bit Operations

* Although ones and zeros on a logical expression can be reduced to a single
outcome, the more complex (most useful) logical expression consists of
variables

* Logical expressions with variables describe digital connections within a circuit

* Example of logical expression with variables may look like:

(X +Y)eZ+(WeY)

, in where each variable (W, X, Y, Z) can have the binary value O or 1

* In order to evaluate this type of logical expression, Boolean algebra is used.

WoNTANA TecH

Bit Operations

* In Boolean algebra, theorems were formed in order to better evaluate
logical expression.

 Example of simple theorem:

Xel Theorem 1D

Outcome always equals to the value of X
in both instances; therefore:

MONTANA TECH

(o ot
v Damian Valles, PhD - Computer Science —-— Montana Tech

Bit Operations

* Depending on the literature, different notations can be found:
e The logic NOT is A.K.A the COMPLEMENT.
* Some of the notations are:
X=X
* The logic AND can also have notations as:
X eYeo 7 =XYZ

X o(Ye2)=X(YZ)=XYZ

Bit Operations

DeMorgan’s Theorem (12 & 12D) vs Duality Theorem (13 & 13D)

* DeMorgan’s states (in my own words):

When you complement the expression within a parenthesis, each variable
is complemented; as well as, the logical operation between variables.

* Duality states (in my own words):

When you complement the expression within a parenthesis, each variable
is not complemented; however, the logical operation between variables is
complemented.

Meaning:

 The complement of an OR is an AND
 The complement of an AND is an OR

MONTANA TECH

EITN
V Damian Valles, PhD - Computer Science — Montana Tech

Bit Operations

MONTANA TECH

&)

Let’s see an example of reducing a logical expression with variables:

AB'C' + CD' + BC'D’
| J | J
Apply Theorem 8: X =D’, Y=C & Z=BC’

AB'C' +D'(C + BC")
|

Apply Theorem 11D: X=B, Y=C& Y’'=C’

AB'C' + D'(C + B)

: N
< Apply Theorem 8 once more

AB'C' +CD' + Bp'

Bit Operations

* Previously mentioned, the logical expression describes digital
connections within a digital circuit.

 Digital circuitry diagrams consists of symbols (components/gates) that
describe functionality/response/decision within its paths.

* Adigital circuit diagram may look like this:
1 é
S -
2 { >
o
3

Bit Operations

* The big 3 have digital gate representation: First the AND

* We represent the AND-operation with the AND-Gate symbol:

Output=XeY

e With it’s Truth Table:

INPUT 1 (X-value) INPUT 2 (Y-value) OUTPUT (x AND y)

0 0 0

0
1 0 0
1 1 1

Bit Operations

* We represent the OR-operation with the OR-Gate symbol:

"4

Output=X+Y

e With it’s Truth Table:

INPUT 1 (X-value) INPUT 2 (Y-value) OUTPUT (x ORy)

0 0 0

1
1 0 1
1 1 1

MONTANA TECH

o enc

Bit Operations

* We represent the NOT-operation with the NOT-Gate (INVERTER) symbol:

X Output =X

e With it’s Truth Table:

INPUT (X-value) OUTPUT (NOT x)

0 1
1 0

Bit Operations

Therefore, when a logical expression is used:
F=AB'C'+CD'"+ BC'D’

It can be integrated as logical digital circuit that looks like:

Ale} :AB'C
B[ol— >0 ;

| ‘:D\ 3N
c[E— So—a 1/ —1

Bit Operations

However by using the Theorems, the expression was reduced:
F =AB'C'+CD' + BD'

Which make the circuit change to:

Alel AB'C

g e e i oy S
cB—H—>0 l:_/ 1.7
p[®] >0 BD"

MONTANA TecH |
m

Bit Operations

* Itis veryimportant and useful to reduce the logic to its minimum expression
* The less number of variables in the expression translates to:

= Less number of wires for connections

= Less number of inputs to the gates

= Less bits of information to compute

= More power friendly to the overall digital circuit

MONTANATECH |

