
LCD display, C programming

CSCI 255: Introduction to Embedded Systems • Keith Vertanen • Copyright © 2011

Overview

• LCD

– 2 line text display

– Physical connections

– Control and data lines

• C programming

– Organizing your code

– Global variables

– Parameter passing

2

LCD display

• LCD display:

– Small

– Low power

– Simpler interface than serial communication to a monitor

– 44780 LCD standard makes them mostly interchangeable

– Displays 2 lines with 16 characters / line

3

4

14-pin LCD

GND VCC VEE RS RW EN DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

Control lines

5

Line Function

EN Enable line

Tells the LCD when it is being sent data or a command.

Set EN=1, set other lines and data bus, then set EN=0, 1-0
transition causes LCD to read. EN must be high for minimum
time (depends on particular make of LCD, ~250ns)

RS Register select

Tells the LCD if the information found on the data bus is a
command or data for display.

RS = 0, data is a command
RS = 1, data is text for display

RW Read/write

Tells the LCD whether we are trying to read or write to the LCD.

RW = 0, information on data bus is for writing to LCD
RW = 1, for querying the LCD, e.g. checking if LCD busy

Data bus

• LCD can be set to either 4-bit or 8-bit mode

– 8-bit easier, but requires more wires
• Total of 11 data/control lines, +3 power/ground

• Two cables:

– LCD port for 3 power/ground, 3 control lines

– Port P0, P2, or P3 for 8 data bus lines

– 4-bit, must send command/text one nibble at a time
• Total of 7 data/control lines, +3 power/ground

• One cable:

– LCD port for 3 power/ground, 3 control lines, 4 data bus lines

• Command or output text

– Sent by placing 8-bit char value on data bus

6

Checking busy status

• Instructions take LCD time to process

– LCD signals it is done by lowering level on DB7

– Make a function that will be used by other LCD functions:
• Specify a command, RS = 0

• Specify we want to query LCD, RW = 1

• Mark start of command, EN = 1

• Set all pins on data bus to 1

• Repeat process until DB7 is 0

• Finish the command, EN = 0

• Specify future commands will write to LCD, RW = 0

7

Checking busy status

8

WAIT_LCD:

 CLR EN ; Start LCD command

 CLR RS ; Specify an LCD command

 SETB RW ; Specify we are reading from LCD

 MOV DATA,#0FFh ; Set data bus to all 1's initially

 SETB EN ; Signal LCD to process

 MOV A,DATA ; Read the return value

 JB ACC.7,WAIT_LCD ; If bit 7 high, LCD is still busy

 CLR EN ; Finish the command

 CLR RW ; Turn off RW for future commands

 RET

void LCDWait();

Issuing a command

• LCD accepts a variety of commands

– Create a function that issues a command

– Command is a byte on the input bus

– Procedure (8-bit mode):
• Set RS = 0 to indicate a command

• Set RW = 0 to indicate a write

• Move command onto data bus

• Set EN = 1 to signal start of command

• Wait 4 cycles

• Set EN = 0 to mark end of command

• Wait while LCD is busy

9

Sending a command

10

LCD_COMMAND:

 CLR RS ; Specify this is a command

 CLR RW ; Specify that we are writing

 MOV DATA,A ; Put the command on the data bus

 SETB EN ; Clock out command to LCD

 NOP ; Wait 4 cycles to give LCD time to process

 NOP

 NOP

 NOP

 CLR EN ; Finish the command

 CALL WAIT_LCD ; Wait for command to execute

 RET

void LCDSendCommand(unsigned char cmd);

Initialization commands

• Initializing the LCD, issue three commands:
– 0x38 = 8-bit data bus, 5x8 character font

• 0x20 = data interface command

• 0x10 = bus size, 8-bit (otherwise 4-bit)

• 0x08 = 2 lines LCD display (other 1-line)

• 0x04 = character size 5x10 (otherwise 5x8)

– 0x0C = turn on, with no cursor

• 0x08 = display cursor command

• 0x04 = display on (otherwise off)

• 0x02 = cursor on (otherwise no cursor displayed)

• 0x01 = cursor blinks (otherwise cursor constant)

– 0x06 = turn on cursor auto-advance

• 0x04 = cursor move direction command

• 0x02 = advance cursor after write (otherwise don't)

• 0x01 = shift display after write (otherwise don't)

11

void LCDInit();

Cursor position

• Clearing screen

– Issue command 0x01

• Cursor position

– Issue command:
• 0x80 + desired location

– Only the blue spots are visible

12

void LCDClear();

void LCDSetCursor(unsigned char line,

 unsigned char index);

Writing a character

• Writing a single character

– Will be placed at current cursor position

– Procedure (8-bit mode):
• Set RS = 1 to indicate text data instead of command

• Set RW = 0 to indicate write operation

• Move 8-bit char value to data bus

• Set EN = 1 to mark start of command

• Wait 4 cycles

• Set EN = 0 to mark end of command

• Wait while LCD busy

13

Writing a character

14

WRITE_LCD_TEXT:

 SETB RS ; Specify this is text for display

 CLR RW ; Specify that we are writing

 MOV DATA,A ; Put the command on the data bus

 SETB EN ; Clock out command to LCD

 NOP ; Wait 4 cycles to give LCD time to process

 NOP

 NOP

 NOP

 CLR EN ; Finish the command

 CALL WAIT_LCD ; Wait for command to execute

 RET

void LCDWriteChar(unsigned char ch);

void LCDWriteText(const char* str);

void LCDBlankLine(unsigned char line);

Code organization

• Option 1: Put everything in one giant main function

– Code reuse: virtually impossible
• Frequent repeated code that must be kept in synch

• Using code in another project requires time and care

– Bug density: extremely high
• All variables are available to all parts of the code

• Can't effectively test individual parts in isolation

• High levels of nesting make it hard to see what is going on

– Ability to find things: extremely low
• No separation into functional parts

15

Code organization

• Option 2: Everything in one *.c file, use functions but
pass data via global variables

– Code reuse: tedious
• Requires cutting out just the functions, constants, and globals

related to the functionality you are moving

– Bug density: high
• Global variables lead to unforeseen dependencies

• Bugs become harder to find and more squirrely

• Functions have implicit dependency on 0+ global variables but this
is not explicitly obvious from function parameter list

– Ability to find things: okay
• Need to find where the desired function is

• No real order of the functions in what becomes a very long file

16

Code organization

• Option 3: Everything in one *.c file, use functions and
avoid global variables

– Code reuse: somewhat tedious
• Requires cutting out just the functions and constants related to

the functionality you are moving

– Bug density: moderate
• Functions do one simple job given their input parameters

• If globals are required, they are accessible everywhere

– Ability to find things: okay
• Need to find where the desired function is

• No real order of the functions in what becomes a very long file

 17

Code organization

• Option 4: Separate different functionality into
different *.h and *.c files

– Code reuse: good
• New project can just add the relevant pair of *.h and *.c files

– Bug density: low
• Functions do one simple job given their input parameters

• If globals are needed, they can be isolated to their *.c file

– static globals = private instance variables

– static functions = private methods

– Ability to find things: good
• Look in relevant *.h file to see what functions are available

• Look in relevant *.c file to see implementation of a function

18

sleep.h

19

// Power savings based sleep function that uses timer0

// Includes the timer0 type 1 interrupt function.

#ifndef __SLEEP_H__

#define __SLEEP_H__

#include <REG52.h>

void startTimer0(); // Start the 0.01s heartbeat on timer0

void sleep(); // Power savings sleep for 0.01s

// Sleep for the given number of hundreths of a second

void sleepHundreths(unsigned char hundreths);

#endif

sleep.c

20

#include "sleep.h"

void startTimer0()

{

 TMOD = TMOD & 252; // Mask out lowest 2 bits

 TMOD++; // Set T0M1/T0M0 to 01

 TH0 = 219; // Setup for ~0.01 delay

 TR0 = 1; // Start timer0 running

 ET0 = 1; // Enable timer0 interrupt

 EA = 1; // Global interrupt enable

}

void timer0ISR() interrupt 1

{

 TH0 = 219;

}

void sleep()

{

 TH0 = 219;

 PCON = 1;

}

void sleepHundreths(unsigned char hundreths)

{

 unsigned char i = 0;

 for (i = 0; i < hundreths; i++)

 sleep();

}

21

