LCD display, C programming

CSCl 255: Introduction to Embedded Systems o Keith Vertanen e Copyright © 2011

Overview

e LCD
— 2 line text display
— Physical connections
— Control and data lines
* Cprogramming
— Organizing your code
— Global variables
— Parameter passing

LCD display

 LCD display:
— Small
— Low power
— Simpler interface than serial communication to a monitor
— 44780 LCD standard makes them mostly interchangeable
— Displays 2 lines with 16 characters / line

14-pin LCD

GND VCC VEE RS RW EN

ATS89OS8252
DOWNLOAD
DC INPUT
LCD PORT

‘(,-,)k'g)(I ALLALIDLL

&Yk)

>3

PORT 0-PORT 3

DBO DB1 DB2 DB3 DB4 DB5

DB6

DB7

PIN NEME Function connected with CPU
1 GND GND
2 VCC +VCC
3 VEE VR Adjust the LCD light LCD
4 RS mmsmlcriou-’])ata select
5 RW P1.1|Read/Write Data
6 E P1.2 Enable
7 D4 P1.4 Data Bit 4
8 D5 P1.5 pata Bit 5
9 Dé P1.6 Data Bit 6
10 D7 P1.7 Data Bit 7

Control lines

EN

RS

RW

Enable line

Tells the LCD when it is being sent data or a command.

Set EN=1, set other lines and data bus, then set EN=0, 1-0
transition causes LCD to read. EN must be high for minimum
time (depends on particular make of LCD, ~250ns)

Register select

Tells the LCD if the information found on the data bus is a
command or data for display.

RS =0, data is a command
RS =1, data is text for display

Read/write

Tells the LCD whether we are trying to read or write to the LCD.

RW =0, information on data bus is for writing to LCD
RW =1, for querying the LCD, e.g. checking if LCD busy

Data bus

e LCD can be set to either 4-bit or 8-bit mode

— 8-bit easier, but requires more wires
» Total of 11 data/control lines, +3 power/ground

 Two cables:
— LCD port for 3 power/ground, 3 control lines
— Port PO, P2, or P3 for 8 data bus lines

— 4-bit, must send command/text one nibble at a time
 Total of 7 data/control lines, +3 power/ground

* One cable:
— LCD port for 3 power/ground, 3 control lines, 4 data bus lines

e Command or output text
— Sent by placing 8-bit char value on data bus

Checking busy status

* Instructions take LCD time to process

— LCD signals it is done by lowering level on DB7

— Make a function that will be used by other LCD functions:
e Specify a command, RS=0
* Specify we want to query LCD, RW =1
 Mark start of command, EN=1
e Set all pins on data busto 1
* Repeat process until DB7 is O
* Finish the command, EN=0
e Specify future commands will write to LCD, RW =0

Checking busy status

WAIT LCD:
CLR EN ; Start LCD command
CLR RS ; Specify an LCD command
SETB RW ; Specify we are reading from LCD
MOV DATA, #0FFh ; Set data bus to all 1's initially
SETB EN ; Signal LCD to process
MOV A ,DATA ; Read the return wvalue
JB ACC.7,WAIT LCD ; If bit 7 high, LCD is still busy
CLR EN ; Finish the command
CLR RW ; Turn off RW for future commands
RET

void LCDWait () ;

Issuing a command

LCD accepts a variety of commands

— Create a function that issues a command

— Command is a byte on the input bus

— Procedure (8-bit mode):

Set RS = 0 to indicate a command

Set RW =0 to indicate a write

Move command onto data bus

Set EN =1 to signal start of command
Wait 4 cycles

Set EN = 0 to mark end of command
Wait while LCD is busy

Sending a command

LCD_COMMAND::

CLR RS

CLR RW
MOV DATA,A
SETB EN
NOP

NOP

NOP

NOP

CLR EN

CALL WAIT LCD
RET

Specify this is a command

Specify that we are writing

Put the command on the data bus

Clock out command to LCD

Wait 4 cycles to give LCD time to process

Finish the command
Wait for command to execute

void LCDSendCommand (unsigned char cmd) ;

10

Initialization commands

Initializing the LCD, issue three commands:

— 0x38 = 8-bit data bus, 5x8 character font
e 0x20 = data interface command
* 0x10 = bus size, 8-bit (otherwise 4-bit)
* 0x08 = 2 lines LCD display (other 1-line)

* 0x04 = character size 5x10 (otherwise 5x8)

void LCDInit();

— 0x0C = turn on, with no cursor
e 0x08 = display cursor command
* 0x04 = display on (otherwise off)
e 0x02 = cursor on (otherwise no cursor displayed)
e 0x01 = cursor blinks (otherwise cursor constant)
— 0x06 = turn on cursor auto-advance
e 0x04 = cursor move direction command
e 0x02 = advance cursor after write (otherwise don't)
e 0x01 = shift display after write (otherwise don't)

11

Cursor position

e Clearing screen void LCDClear () ;

— |ssue command 0x01

° CU rsor p05|t|0n void LCDSetCursor (unsigned char line,
unsigned char index) ;

— |ssue command:

* 0x80 + desired location
— Only the blue spots are visible
Display @@ A1 B2 B2 A4 B5 B @7 B2 B9 18 11 12 13 14 15 16

RUEREN EE BN EE CE ER EE BB CH EE EE ER B3R B Ex ER ERE FE W RE FE FE = pe
Line 2 |ao]4i] a2]4aaa]4c]ac) 47] 4] 4o] sn] 4e]4cf o] sefarfcafifca]safca]ca]. . .

12

Writing a character

Writing a single character

— Will be placed at current cursor position

— Procedure (8-bit mode):

Set RS =1 to indicate text data instead of command
Set RW =0 to indicate write operation

Move 8-bit char value to data bus

Set EN =1 to mark start of command

Wait 4 cycles

Set EN = 0 to mark end of command

Wait while LCD busy

Writing a character

WRITE LCD TEXT:

SETB RS
CLR RW
MOV DATA,A
SETB EN
NOP

NOP

NOP

NOP

CLR EN

CALL WAIT LCD
RET

; Specify this is text for display

; Specify that we are writing

; Put the command on the data bus

; Clock out command to LCD

; Wait 4 cycles to give LCD time to process

; Finish the command
; Wait for command to execute

void LCDWriteChar (unsigned char ch);
void LCDWriteText (const char* str);
void LCDBlankLine (unsigned char line);

14

Code organization

e Option 1: Put everything in one giant main function

— Code reuse: virtually impossible

* Frequent repeated code that must be kept in synch

e Using code in another project requires time and care
— Bug density: extremely high

» All variables are available to all parts of the code

* Can't effectively test individual parts in isolation

* High levels of nesting make it hard to see what is going on
— Ability to find things: extremely low

* No separation into functional parts

15

Code organization

* Option 2: Everything in one *.c file, use functions but
pass data via global variables

— Code reuse: tedious

* Requires cutting out just the functions, constants, and globals
related to the functionality you are moving

— Bug density: high
* Global variables lead to unforeseen dependencies
* Bugs become harder to find and more squirrely

* Functions have implicit dependency on 0+ global variables but this
is not explicitly obvious from function parameter list

— Ability to find things: okay
* Need to find where the desired function is

* No real order of the functions in what becomes a very long file

16

Code organization

e Option 3: Everything in one *.c file, use functions and
avoid global variables

— Code reuse: somewhat tedious

* Requires cutting out just the functions and constants related to
the functionality you are moving

— Bug density: moderate
* Functions do one simple job given their input parameters
* If globals are required, they are accessible everywhere
— Ability to find things: okay
* Need to find where the desired function is
* No real order of the functions in what becomes a very long file

17

Code organization

* Option 4: Separate different functionality into
different *.h and *.c files

— Code reuse: good

* New project can just add the relevant pair of *.h and *.c files
— Bug density: low

* Functions do one simple job given their input parameters

 If globals are needed, they can be isolated to their *.cfile
— static globals = private instance variables
— static functions = private methods

— Ability to find things: good
* Lookin relevant *.h file to see what functions are available
* Look in relevant *.c file to see implementation of a function

18

sleep.h

// Power savings based sleep function that uses timer0
// Includes the timer0 type 1 interrupt function.

#ifndef SLEEP H
#define _ SLEEP H

#include <REG52.h>

void startTimerO(); // Start the 0.0ls heartbeat on timer0
void sleep() ; // Power savings sleep for 0.0ls

// Sleep for the given number of hundreths of a second
void sleepHundreths (unsigned char hundreths) ;

#endif

19

sleep.c

#include "sleep.h"

void startTimerO ()

{
TMOD = TMOD & 252; // Mask out lowest 2 bits

TMOD++; // Set TOM1/TOMO to 01

THO = 219; // Setup for ~0.01 delay
TRO = 1; // Start timer0 running
ETO0O = 1; // Enable timer0 interrupt

EA

|
(Y

// Global interrupt enable
}

void timerOISR() interrupt 1
{

THO = 219;
}

void sleep()
{
THO
PCON

219;
iy

}

void sleepHundreths (unsigned char hundreths)
{
unsigned char i = 0;
for (i = 0; i < hundreths; i++)
sleep() ;

P

E] Build Qutput

ChDropboximtechtembedded\c\Security’ Security.uvproj - uVisiond o | = | 22|
File Edit View Project Flash Debug Peripherals Tools 5SVCS Window Help
o [B @ B B Target1 BFEIE =
Project o keypad.c keypad.h sleep.h sleep.c led.h led.c Security.c * X
EE Target1 01 /Y Power savings bassd slesp functicon that usss timerd j
-5 Source Group 1 B2 // Includes the timerl type 1 interrupt function
; Security.c 03
led.c 04 #ifndef SLEEP H
sleep.c 05 #define SLEEF H
-8 keypadc =
07 #include <REGSZ.h>
0a
03 woid startTimerd () S Start the 0.01s hearths
10 woid =sleep(): /4 Power savings slssp for
11 woid sleepHundreths (nn=signed char hundreths): // Slesp for the given num
12
13 #endif
14
l -
=] Project | {} Functions [« | :

Simulation

21

