
Concurrency

Fundamentals of Computer Science

http://csunplugged.org/routing-and-deadlock

http://csunplugged.org/routing-and-deadlock

Outline

 Multi-threaded programs

 Multiple simultaneous paths of execution

 Seemingly at once (single core)

 Actually at the same time (multiple cores)

 Concurrency issues

 The dark side of threading

 Unpredictability of thread scheduler

 Protecting shared data:

 locked methods

 Deadlock

 The really dark side of threading

3

import threading

def BlastOff ():
for i in range(10, 0, -1):

print(i, end=" ")
print("BLAST OFF!")

if __name__ == "__main__":
print("prepare for launch")
thread = threading.Thread(target=BlastOff)
thread.start()
print("done with launch")

% python Launch.py
prepare for launch
done with launch
10 9 8 7 6 5 4 3 2 1 BLAST OFF!

Review: Creating & Starting a Thread

% python Launch.py
prepare for launch
10 9 done with launch
8 7 6 5 4 3 2 1 BLAST OFF!

% python Launch.py
prepare for launch
10 done with launch
9 8 7 6 5 4 3 2 1 BLAST OFF!

…

4

% python ParallelSearch.py 1000000 2 7 16 42 99

Starting workers...
Count of 2 = 9888
Count of 7 = 10222
Count of 16 = 9989
Count of 42 = 10099
Count of 99 = 9894

Review: Multithreading for Speed

 Goal: Count how often different integers occur

 In a large array of integers

 Randomly generated in [0, 100]

 Have one thread handle each target integer

Serial Version of Search

5

DATA_SIZE = int(sys.argv[1])
NUM_TARGETS = len(sys.argv)-2

data = [0]*DATA_SIZE
for i in range(0, DATA_SIZE):

data[i] = random.randint(0,100)

targets = [0]*NUM_TARGETS
counts = [0]*NUM_TARGETS

for i in range(0, NUM_TARGETS):
targets[i] = int(sys.argv[i+2])

stats = time.time()

for i in range(0, len(data)):
for j in range(0, NUM_TARGETS):

if data[i] == targets[j]:
counts[j] += 1

for i in range(0, NUM_TARGETS):
print("Count of %d = %d\n" %(targets[i], counts[i]))

print("Elapsed time = %.4f\n" %(time.time() - stats))

Search Worker

6

class SearchWorker:

def __init__(self, target, data):
Instance variables used to hold our input and output

self.target = target
self.data = data
self.result = 0

Allow clients to find out the result of our search
def getResult(self):

return self.result

Allow clients to find out the value we were searching for
def getTarget(self):

return self.target

Business end of the worker, fires up when Thread.start() is called
def run(self):

Loop over all the positions in the array
for i in range(0, len(self.data)):

Increment if we find a matching value
if self.data[i] == self.target:

self.result += 1

Worker object:
One of these is created for each target
integer we want to search for.

Needs to keep track of its input: what
number to search for, the array to search
in.

Must remember its output: count of the
target in the array.

Parallel Search Client

7

DATA_SIZE = int(sys.argv[1])
WORKERS = len(sys.argv)-2

data = [0]*DATA_SIZE
for i in range(0, DATA_SIZE):

data[i] = random.randint(0,100)

print("Starting workers...")
stats = time.time()

workers = [None]*WORKERS
threads = [None]*WORKERS
for i in range(0, WORKERS):

workers[i] = SearchWorker(int(sys.argv[i + 2]), data)
threads[i] = threading.Thread(target=workers[i].run())
threads[i].start()

for i in range(0, WORKERS):
threads[i].join()
print("Count of %d = %d\n" %(int(sys.argv[i + 2]), workers[i].getResult()))

print("Elapsed time = %.4f\n" %(time.time() - stats))

Client program:
1. Parses command line arguments.
2. Creates random list of data to search in.
3. Creates each worker, launches each

worker in its own thread.
4. Waits for each thread to finish, printing

out the worker’s result.

Trouble in Concurrency City: Act 1

 Lost update problem
 Multiple threads

 All sharing a single counter object

 Each thread increments fixed number of times

8

class Count:

def __init__(self):
self.count = 0

def getCount(self):
return self.count

def increment(self):
self.count +=1

class IncrementWorker:

def __init__(self, count):
self.count = count

def run(self):
for i in range(0, 1000):

self.count.increment()

Lost Update Problem

9

if __name__ == "__main__":
Parse the command line arguments
if len(sys.argv) < 2:

print("Increment <number of workers>")
else:

N = int(sys.argv[1])

Create a single counter object used by all workers
counter = Count()
threads = [None]*N

Spin up a worker that each will increment the counter by 1000
for i in range(0, N):

threads[i] = threading.Thread(target=IncrementWorker(counter).run)
threads[i].start()

Wait for all the workers to finish
for i in range(0, N):

threads[i].join()

print("Final count = " + str(counter.getCount()))

% python Increment.py 1
Final count = 1000

% python Increment.py 2
Final count = 2000

% python Increment.py 10
Final count = 10000

% python Increment.py 100
Final count = 100000

% python Increment.py 1000
Final count = 999000

Locking Methods

 Only allow 1 worker in increment at a time!

 Tell Python this by using threading.Lock()

10

class IncrementWorker:

def __init__(self, count):
self.count = count

def run(self, lock):
for i in range(0, 1000):

lock.acquire()
self.count.increment()
lock.release()

% python IncrementSafe.py 2000
Final count = 2000000

% python IncrementSafe.py 2000
Final count = 2000000

% python IncrementSafe.py 2000
Final count = 2000000

Trouble in Concurrency City: Act 2

 Concurrent access to same data structure

 Many built-in containers are not thread-safe!

 Program will crash (probably)

 Not always, so hard to debug

 Protect all reading/writing to shared structure

 Via locked method or locked code block

11

Trouble in Concurrency City: Act 3

 Deadlock
 Program stops doing anything useful

 All you need is 2 objects and 2 threads

12

Summary

 Multi-threaded programs

 Multiple simultaneous paths of execution

 Seemingly at once (single core)

 Actually at the same time (multiple cores)

 Concurrency issues

 The dark side of threading

 Unpredictability of thread scheduler

 Protecting shared data:

 locked methods

 Deadlock

 The really dark side of threading

Your Turn

 Create a function that:
 Draws something using StdDraw in unit box
 Sleeps at least 500ms
 Changes something about the drawing
 Repeats forever
 Don't worry about erasing

 Don't call StdDraw.clear()

 I'll integrate into my ThreadZoo program and run this next lecture
class

 Open Moodle, go to CSCI 136, Section 11
 Open the dropbox for today – Activity 4 - Threads
 Drag and drop your program file to the Moodle dropbox
 You get: 1 point if you turn in something, 2 points if you

turn in something that is correct.

Your Turn Part 2

 Goal: Increment/decrement all ints in an array
 Create class NumHolder, holds list of 100 integers

 Create increment() and decrement() methods
 Methods that go through all 100 integers and increments or decrements them

 Create run() method
 Loop 10,000 times, on each loop flip coin and call either increment() or decrement()

 Create main program that:
 Creates a single NumHolder object
 Creates two threads, passing them the NumHolder object you created
 Prints out NumHolder object values
 Starts threads, wait for them to finish
 Prints out NumHolder again

 Hint: All numbers should be the same in the second print of NumHolder

 Open Moodle, go to CSCI 136, Section 01
 Open the dropbox Activity 5 - Concurrency
 Drag and drop your program file to the Moodle dropbox
 You get: 1 point if you turn in something, 2 points if you turn in

something that is correct.

15

