
Object Oriented Design

Fundamentals of Computer Science 

zombie[0]

zombie[2]
zombie[5]

zombie[1]
zombie[3]

zombie[4]

There’s more…?



Outline

 Object Oriented Design

 Identify the Classes

 Identify what Information each Class Needs

 Identify what each Class Needs to Do



Software Development Life Cycle

3

1. Understand the Problem = Requirements 
Analysis

2. Work out the Logic = Design

3. Convert it to Code = Implementation

4. Test/Debug

5. Maintenance

Today we will talk about requirements 
analysis and object oriented design.



What are the Nouns?

 You have been hired to automate bank operations 
for a local credit union. They have told you that 
their business operates as follows:

 Customers can open accounts. They can make deposits and 
withdrawals and can close accounts also. On some accounts 
interest needs to be added, and sometimes fees are deducted.

 All employees can help customers with deposits and 
withdrawals. Only some employees are authorized to open 
and close accounts.

4



From Last Year…



UML Diagram

-Name
-SSN
-Address
-Phone
-Email
-Preferred method of contact

Person

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active
-Hire Date
-Position
-Salary
-Direct Deposit

Employee

-Debit Card
-Accounts LIst
-Account Length (Time)
-Account Balances
-Ranking
-Loan?
-Credit Score
-Type (Person/Corp.)
-Password/PIN
-Bill Autopay?

Customer

+Assign Acct Number()

-Balance
-Transaction History
-Authorized Parties / Levels
-Open/Closed
-Date Opened
-Who Opened
-Acct Number

Account

-Type
-Interest Applied
-Fees
-Name of Account
-Minimum Balance
-Overdraft Fee
-Stipulations for Withdrawal
-Max Amount
-Num Withdrawals Allowed

Product

-Date
-Type (Auto/Cash/Check)
-Amount
-Account

Transaction

-Origin
-Approve or Not

Deposit

-Unauthorized Attempts

Withdrawal

-End11

-End2

*

-Balance
-Rate
-Calculation Method
-Loan or Savings
-Date
-Account

Interest

-Type
-Account
-Amount
-Date

Fee

-End3

1

-End4

* -End5

1

-End6

*

-End7

1

-End8

*

Attributes/State

Methods/Behavior

Class Name

Inheritance (is-a)

Composition (has-a)



Simplifying the Design – Classes and Attributes

 Look for repetition of data

 Try to have each piece of data in only one place

 Look for “modifiers”

 These might indicate the attribute should be in a different class

 e.g. Under Customer, we have “Account Length (Time)” and 
“Account Balance”

 Since they both reference account, they should probably be in 
the Account class

 Walk through each attribute and see if it makes 
sense

 Does it really applies to that class



Modified UML

-Name
-SSN
-Address
-Phone
-Email
-Preferred method of contact

Person

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active
-Hire Date
-Position
-Salary
-Direct Deposit

Employee

-Debit Card
-Accounts List
-Ranking
-Loan?
-Credit Score
-Type (Person/Corp.)
-Password/PIN
-Bill Autopay?

Customer

+Assign Acct Number()

-Balance
-Transaction History
-Authorized Parties / Levels
-Open/Closed
-Date Opened
-Who Opened
-Acct Number

Account

-Type
-Interest Applied
-Fees
-Name of Account
-Minimum Balance
-Overdraft Fee
-Stipulations for Withdrawal
-Max Amount
-Num Withdrawals Allowed

Product

-Date
-Type (Auto/Cash/Check)
-Amount
-Account
-Origin
-Approve or Not

Transaction

-End11

-End2

*

-Rate
-Calculation Method

Interest

-Type
-Amount

Fee

-End3

1

-End4

*

-End5

1

-End6

*

-End7

1 -End8

*

Removed account data
Made interest and fees part of product

Removed deposit and withdrawal



Add Behaviors - What are the Verbs?

 You have been hired to automate bank operations 
for a local credit union. They have told you that 
their business operates as follows:

 Customers can open accounts. They can make deposits and 
withdrawals and can close accounts also. On some accounts 
interest needs to be added, and sometimes fees are deducted.

 All employees can help customers with deposits and 
withdrawals. Only some employees are authorized to open 
and close accounts.

9



UML with Behaviors

+Create()
+Read()
+Update()
+Delete()

-Name
-SSN
-Address
-Phone
-Email
-Preferred method of contact

Person

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active
-Hire Date
-Position
-Salary
-Direct Deposit

Employee

+Assign Customer ID()

-Debit Card
-Accounts List
-Ranking
-Loan?
-Credit Score
-Type (Person/Corp.)
-Password/PIN
-Bill Autopay?

Customer

+Assign Acct Number()
+Create()
+Read()
+Update()
+Delete()

-Balance
-Transaction History
-Authorized Parties / Levels
-Open/Closed
-Date Opened
-Who Opened
-Acct Number

Account

+Create()
+Read()
+Update()
+Delete()

-Type
-Interest Applied
-Fees
-Name of Account
-Minimum Balance
-Overdraft Fee
-Stipulations for Withdrawal
-Max Amount
-Num Withdrawals Allowed

Product

+Create()
+Read()
+Update()
+Delete()

-Date
-Type (Auto/Cash/Check)
-Amount
-Account
-Origin
-Approve or Not

Transaction -End11

-End2

*

-Rate
-Calculation Method

Interest

-Type
-Amount

Fee

-End3

1

-End4

*

-End5

1

-End6

*

-End7

1
-End8

*



More Design

 Use Cases

 Walk through typical uses of your software and make sure the 
state and behavior support those cases

 Application Program Interface – API

 Write an API for the interface to each of your classes

 For each method, define:

 Name

 Input Parameters

 Return Values

 Define data types for each attribute

 Might mean splitting a single attribute into several



Implementation

 Once we are happy with our class 
definitions, then we get to write some 
code!!



Summary

 Object Oriented Design

 Identify the classes

 Identify what information each class needs

 Identify what each class needs to do

 Identify use cases

 Define the API

 Define the instance variables

 Finally – write some code!


