Object Oriented Design

Fundamentals of Computer Science

Outline

* Object Oriented Design
o Identify the Classes
o Identify what Information each Class Needs
o Identify what each Class Needs to Do

Pl e & S

Understand the Problem = Requirements
Analysis

Work out the Logic = Design
Convert it to Code = Implementation
Test/Debug

Maintenance

Today we will talk about requirements
analysis and object oriented design.

You have been hired to automate bank operations
for a local credit union. They have told you that
their business operates as follows:

Customers can open accounts. They can make deposits and
withdrawals and can close accounts also. On some accounts
interest needs to be added, and sometimes fees are deducted.

All employees can help customers with deposits and
withdrawals. Only some employees are authorized to open
and close accounts.

From Last Year...

6(‘/: W‘PVOL{VQ -
: I‘Nluq can ppan acd‘s':
Fluslomecs at o time
hours of eRefatiory
hime Yhyre achve

1 Dﬂm.o:

fale)
mount

‘g*(ﬁ %r Aule.

Gt

e
07" hot

(Aounts [rst
0ccount UJ\%W\ (’rm;)

lecnee in cctound g
rh Faﬂlr-in()
if 'ﬂ“-"l L\AAL, lﬁa(\

C(ediv Score__

: -
d';i‘edge@%i\' g)a;sm(d\/ pin S R
bill oxuhPQ“ hgulubiong Gor wmw} -

L!M or Se%

[rccount |

UML Diagram

-Type

-Interest Applied

-Fees

-Name of Account

-Minimum Balance
-Preferred method of contact -Overdraft Fee

-Stipulations for Withdrawal

-Max Amount

-Num Withdrawals Allowed

-Loan or Savings

-Open Accounts? -Debit Card -Account
-Num of Customers -Accounts Llst

-Account Length (Time)

-Account Balances

-Ranking

-Loan?

-Credit Score

-Type (Person/Corp.)

-Password/PIN

-Bill Autopay?

-Acct Number

+Assign Acct Number()

-Unauthorized Attempts

[o]
Origin
-Approve or Not

» Look for repetition of data
Try to have each piece of data in only one place

» Look for “modifiers”

These might indicate the attribute should be in a different class

e.g. Under Customer, we have “Account Length (Time)” and
“Account Balance”

o Since they both reference account, they should probably be in
the Account class

» Walk through each attribute and see if it makes
sense
Does it really applies to that class

Modified UML

-Name of Account

-Minimum Balance
-Preferred method of contact -Overdraft Fee

-Stipulations for Withdrawal

-Max Amount

-Num Withdrawals Allowed

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active

-Balance
-Transaction History
-Authorized Parties / Levels

-Position
-Salary -Type (Person/Corp.)
-Direct Deposit -Password/PIN

-Bill Autopay?

You have been hired to automate bank operations
for a local credit union. They have told you that
their business operates as follows:

Customers can open accounts. They can make deposits and
withdrawals and can close accounts also. On some accounts
interest needs to be added, and sometimes fees are deducted.

All employees can help customers with deposits and
withdrawals. Only some employees are authorized to open
and close accounts.

UML with Behaviors

-Name of Account
-Minimum Balance
-Overdraft Fee

-Stipulations for Withdrawal
-Max Amount

-Num Withdrawals Allowed

-Open Accounts?
-Num of Customers -Debit Card

-Hours of Operation -Accounts List
-Balance

-Transaction History
-Authorized Parties / Levels

-Direct Deposit

+Assign Customer ID() +Assign Acct Number()

+Create()
+Read()
+Update()
+Delete()

-Date
-Type (Auto/Cash/Check)

More Design

» Use Cases
Walk through typical uses of your software and make sure the
state and behavior support those cases

» Application Program Interface — API

Write an API for the interface to each of your classes
For each method, define:
o Name
o Input Parameters
o Return Values

» Define data types for each attribute

Might mean splitting a single attribute into several

Once we are happy with our class
definitions, then we get to write some
code!!

Summary

* Object Oriented Design
o Identify the classes
o Identify what information each class needs
o Identify what each class needs to do
o Identify use cases
o Detfine the API
o Define the instance variables
o Finally — write some code!

