Computer Graphics and OpenGL

Jake Michelotti
3/24/2021

Montana Technological University

Overview

& General Overview of Computer Graphics
& OpenGL and some alternatives

& How OpenGL works

& An Example

& References

How Computers Output Graphics

¢ In General

: To Communicate
Uses Graphics With

API

GPU / Video Card

\ 4

Application

lOutputs to

How Computers Output Graphics

OpenGL or
¢ In General some other API

To Communicate
Uses With

GPU

v

Application

l Outputs to

Abstracting the use of

the GPU through an
API allows for cross
platform and language
applications

Display

How Computers Output Graphics

¢ In General

To Communicate
Uses With

v

Application GPU / Video Card

l Outputs to

Most GPU use a
proprietary ISA
that is not
published by the
company

How Computers Output Graphics

¢ In General

To Communicate
Uses With

GPU / Video Card

v

Application

l Outputs to

This makes
directly
interfacing with
the GPU almost
impossible

Most GPU use a
proprietary ISA
that is not
published by the
company

Display

How Computers Output Graphics

¢ In General

Uses GPU / Video Card

\ 4

Application

lOutputs to

Implemented
by

To Communicate .
With Display

GPU

Driver

How Computers Output Graphics

¢ In General

Uses GPU / Video Card

\ 4

Application

lOutputs to

Implemented
Drivers are by

provided by the
manufacturer,

To Communicate Displ
With 1Splay

who does have
the specification
and ISA of the
GPU

GPU

Driver

How Computers Output Graphics

OpenGL and
¢ In General others are just

a specification

Uses GPU / Video Card

\ 4

Application

lOutputs to

Implemented
by

To Communicate .
With Display

GPU

Driver

How Computers Output Graphics

OpenGL and
¢ In General others are just

a specification

Uses GPU / Video Card

\ 4

Application

lOutputs to

Implemented

Actual 7

implementation

To Communicate <ol
With Display

is provided by
the manufacturer
1n their drivers

GPU

Driver

How Computers Output Graphics

¢ In General

Uses GPU / Video Card

Application

lOutputs to

Implemented
Application calls by
to the API go
through a library
in the operating
system

To Communicate <ol
With Display

GPU

Driver

How Computers Output Graphics

¢ In General

GPU / Video Card

Application

lOutputs to

This library acts Implemented

as a trampoline by

Qn Windows and forwards the
with OpenGL calls to the

the API calls an implementation

application in the device
makes are to the driver

opengl32.dll

To Communicate ol
With Display

GPU

Driver

What 1s OpenGL

& Application Programmer Interface

& Specification not an Implementation

& Cross-Platform (OS)

& Cross-Language

& Specification 1s maintained by the Khronos Group consortium

& Widely used across all platforms and applications

Other Graphics APIs — Direct3d

& Microsoft’s 3D graphics API
& 3D graphics API within the DirectX libraries
& Is widely used in for video games

& Only available on Windows

Other Graphics APIs - Vulcan

& Also maintained by the Khronos Group

& Developed to be the successor of OpenGL

® Provide a lower-level API giving more direct access to the GPU
& Improved performance over OpenGL

& Specification was released in 2016

& Starting to see wider adoption across the industry

Computer Graphics Without an API?

& It 1s entirely possible to calculate an image and display within a window
¢ On windows 1t would require an operating system call like BitBLt
& Windows also provides the graphic device interface (GDI)
& Allows the users simple access to graphical programing without using the GPU or video card

¢ Cannot do 3D graphics

& Struggles with 2D animation

& Generally everything displayed on the monitor 1s at least piped through the GPU / Video
Card

General Computing APIs

& GPU’s are extremely useful for computing outside of graphics
& Until fairly recently, utilizing GPUs was done by bending OpenGL to accomplish the task
& OpenCL 1s focused on heterogeneous computing
& Is also maintained by the Khronos Group
& Cuda is focused on general purpose use of GPUs

¢ Maintained by and only functions on GPUs manufactured by Nvidia

How OpenGL Works

® OpenGL 1s a large state machine

& A large collection of variables define how OpenGL should
currently operate

& For example, to change OpenGL from drawing triangles to lines
we change the context variable that defines how it should draw

& The current state of OpenGL 1s called the context

How OpenGL Works

¢ The Birds Eye View of steps to operating OpenGL
& Create a Window
& Create an OpenGL context
¢ Give OpenGL data to render
¢ Set OpenGL to the desired context

¢ Have OpenGL render

How OpenGL Works

¢ The Birds Eye View of steps to operating OpenGL

® Create a Window

& Create an OpenGL context
¢ Give OpenGL data to render
& Set OpenGL to the desired context

¢ Have OpenGL render OpenGL cannot
operate without

a window

OpenGL Objects

¢ The context and data OpenGL is working with are controlled by OpenGL objects
& Objects are an abstraction that allows for easier translation to higher languages

¢ OpenGL libraries are usually implemented in C, so objects can be thought of as more as
structs

OpenGL Objects

& Creating and using an object involves the following workflow

[/ create object

unsigned int objectld = @;

glGenObject(l, &objectld);

// bind/fassign object to context

glBindObject(GL WINDOW TARGET, objectlId);

[/ set options of object currently bound to GL WINDOW TARGET
glSetObjectOption(GL WINDOW TARGET, GL OPTION WINDOW WIDTH, 808);
glSetObjectOption(GL WINDOW TARGET, GL OPTION WINDOW HEIGHT, &688);
// set context target back to default
glBindObject(GL WINDOW TARGET, @);

The OpenGL Graphics Pipeline

& Well a sismplified
VEersion Of 1t VERTEX SHADER GEOMETRY SHADER

VERTEKDATA“_»B @

FRAGMENT SHADER

The OpenGL Graphics Pipeline

& The output of

each step 1S iHPU—t VERTEX SHADER GEOMETRY SHADER
to the next step

& A small program
s St AL VERTEX DATA[] — — d — &
for each step of]

the pipeline

& These programs
are called shaders

FRAGMENT SHADER

The OpenGL Graphics Pipeline

¢ The vertex data
fed il’l 1n1t1a11y VERTEX SHADER GEOMETRY SHADER

consist usually of

3 or 4 vector

coordinates VERTEX DATA[] — — =3
¢ This 1s done with

the OpenGL
Shading Language

¢ GLSL

FRAGMENT SHADER

The OpenGL Graphics Pipeline

¢ The vertex data 1s
an arfay Of VERTEX SHADER GEOMETRY SHADER

coordinates

representing

points in 3d VERTEX DATA[] —
space

FRAGMENT SHADER

The OpenGL Graphics Pipeline

¢ The vertex shader
1S provided by the leLx SHADER GEOMETRY SHADER

user
& Its purpose i1s to
calculate 3d VERTEX DATA[] —
transformations
that occur

FRAGMENT SHADER

The OpenGL Graphics

& Shape assembly
links the 3d

- SH %o VERTEX SHADER GEOMETRY SHADER
points it is

provided into
primitive shapes d &
VERTEX DATA[] —
¢ These shapes are
most often

triangles in
OpenGL

& They can be lines
or the 3d points
can be left alone

FRAGMENT SHADER

The OpenGL Graphics Pipeline

& The Geometry ‘

VERTEX SHADER GEOMETRY SHADER

VERTEX DATA[] — m— d i &

shader takes
primitive shapes
and can form
more complex
ones

& It can be defined
by the developer
but has a default
shader program
as well

FRAGMENT SHADER

The OpenGL Graphics Pipeline - Data

& Rasterization maps
the primitive shapes
to their
corresponding
pixels on the final
display

VERTEX SHADER GEOMETRY SHADER

o _{j_’ﬁ@
!

& It also performs
clipping, removing
ay primitive shapes
outside of the
display, increasing
performance

FRAGMENT SHADER

The OpenGL Graphics Pipeline - Data

& The fragment
shader decides VERTEX SHADER GEOMETRY SHADER

what color each
pixel 1s going to be
& This shader needs VERTEX DATA[] — — -
to be defined by the
developer l

& Calculations like
light, shadows,
color of light, etc
would be
performed here

FRAGMENT SHADER

The OpenGL Graphics Pipeline - Data

& Tests and Blending
ChCCkS What plXCIS VERTEX SHADER GEOMETRY SHADER

are behind other
pixels

& It also applies VERTEX DATA[] —
opacity to pixels

FRAGMENT SHADER

Example: Drawing a Triangle

& Steps
1. Create a window and OpenGL context
2. Send OpenGL data
3. Create a Vertex shader and Fragment shader
4. Tell OpenGL how to read our data
5. Set the Context for the rendering

6. Render the triangle
& Code will be shown when helpful

& This example was done using C++

Example: Drawing a Triangle

& Steps
» 1. Create a window and OpenGL context
2. Send OpenGL data
3. Create a Vertex shader and Fragment shader
4. Tell OpenGL how to read our data
5. Set the Context for the rendering

6. Render the triangle

Create A Window and OpenGL Context

& Can be done with a library called GLFW
& It will perform all the necessary OS calls to set up a window and context
¢ GLFW also accounts for user input like window resizing or escapes

& There are many alternatives to GLFW

Create A Window and OpenGL Context

¢ With hand waving, GLFW is used to:
& Create a window
¢ Create an OpenGL context
¢ Handle if the user resizes the window
¢ Handle if the user quits

¢ Handle the render loop

& The code 1s long and not that interesting

Example: Drawing a Triangle

& Steps
1. Create a window and OpenGL context
Send OpenGL data

3. Create a Vertex shader and Fragment shader

4. Tell OpenGL how to read the data

5. Set the Context for the rendering

6. Render the triangle

Example: Drawing a Triangle

& Steps
1. Create a window and OpenGL context

Send OpenGL data

3. Create a Vertex shader and Fragment shader
4. Tell OpenGL how to read the data
5. Set the Context for the rendering

6. Render the triangle

These last two
steps are
performed

repeatedly within
the render loop

Send OpenGL data

& Here 1s the data we are going to send OpenGL

float vertices[] = {

-0.5f, -8.5f, 0.ef,
0.5f, -8.5f, 0.ef,
0.8f, ©.5f, 9.ef

I;

& It consists of three 3d points

¢ Even though we are only drawing a 2d triangle, OpenGL only works in 3d

Send OpenGL data

¢ Data 1s sent to the GPU and set to the current context through objects

¢ To do this create a buffer object

unsigned int VBO;
glGenBuffers(l, &WBO);

¢ Bind it to the OpenGL context variable GL._ARRAY_BUFFER

glEinl:l Buffer {EL_AHHN'I"_EUFFEH, UEI}] :
¢ Then put the data into the buffer currently bound to GL_ARRAY_BUFFER

glBufferData(GL ARRAY BUFFER, sizeof(vertices), vertices, GL STATIC DRAW);

Example: Drawing a Triangle

& Steps
1. Create a window and OpenGL context
Send OpenGL data
Create a Vertex shader and Fragment shader

4. Tell OpenGL how to read the data

5. Set the Context for the rendering

6. Render the triangle

Create a Vertex and Fragment shader

¢ The Vertex and Fragment shaders need to be provided by the developer

Create a Vertex and Fragment shader

¢ The Vertex shader will work as a pipe

#version 338 core
layout (location = @) in vec3 aPos;

volid main()}

{
}

& Taking the input and sending it to the output

gl Position = vecd4{aPos.x, aPos.y, aPos.z, 1.8);

Create a Vertex and Fragment shader

& The Fragment shader will just output the color orange

#version 338 core
out vecd FragColor;

void main()

{
'

FragColor = vec4(l.ef, 8.5f, 8.2f, 1.8f);

Create a Vertex and Fragment shader

& To compile the shaders you create a shader object

unsigned int vertexShader;
vertexShader = glCreateShader(GL VERTEX SHADER);

& The code 1s then given to the shader object in the form of C string

const char *vertexShaderSource = "#version 338 core\n”
"layout (location = 8) in vec3 aPos;\n"
"void main{)\n"
II{'lIII.r_IlF
" gl Position = vec4(aPos.x, aPos.y, aPos.z, 1.8);\n"

" He";

¢ And compiled

glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader);

Create a Vertex and Fragment shader

& After the shaders are compiled they are linked into a program

unsigned int shaderProgram;
shaderProgram = glCreateProgram();

glAttachShader({shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
gl inkProgram(shaderProgram) ;

& And are ready for use

Example: Drawing a Triangle

& Steps
1. Create a window and OpenGL context
2. Send OpenGL data
Create a Vertex shader and Fragment shader

Tell OpenGL how to read the data

5. Set the Context for the rendering

6. Render the triangle

Tell OpenGL how to read the data

& The vertices data did not need to be formatted this way

float vertices[] = {

-0.5f, -8.5f, 0.ef,
0.5f, -8.5f, 0.ef,
0.8f, ©.5f, 9.ef

I;

¢ OpenGL does not specify how vertex attributes should be inputted to the vertex shader

& So we need to tell it how to read the data given

Tell OpenGL how to read the data

& This 1s done through a vertex attribute pointer

glVertexAttribPointer(®, 3, GL FLOAT, GL_FALSE, 3 * sizeof(float), (void*)e);
glEnableVertexAttribArray(8);

Tell OpenGL how to read the data

& This 1s done through a vertex attribute pointer

glVertexAttribPointer(®, 3, GL FLOAT, GL_FALSE, 3 * sizeof(float), (void*)e);
glEnableVertexAttribArray(8);

glBindBuffer{GL ARRAY BUFFER, VEO);

& This links the currently bound array buffer

Tell OpenGL how to read the data

& This 1s done through a vertex attribute pointer

glVertexAttribPointer(®, 3, GL FLOAT, GL_FALSE, 3 * sizeof(float), (void*)e);
glEnableVertexAttribArray(8);

#version 338 core
layout (location = 8) in vec3 aPos;

glBindBuffer{GL ARRAY BUFFER, VB(); void main()

gl Position = vecd4(aPos.x, aPos.y, aPos.z, 1.8);
}

& This links the currently bound array buffer to the input variables of the vertex shader

Tell OpenGL how to read the data

& This 1s done through a vertex attribute pointer

glVertexAttribPointer(®, 3, GL FLOAT, GL_FALSE, 3 * sizeof(float), (void*)e);
glEnableVertexAttribArray(8);

& It also specifies how the data should be interpreted

Tell OpenGL how to read the data

& We can have multiple Vertex buffer objects, each with multiple vertex attribute pointers
& This could be a nightmare to manager

& To track all of this OpenGL gives Vertex Array Objects

& VAO'’s automatically keep track of the connections between VBOs and attribute pointers

¢ OpenGL will not render without them

Tell OpenGL how to read the data

& To use them we create them, bind them to the current context, and then initialize the data
like usual

unsigned int VAO;
glGenVertexArrays(l, &VAOQ);
f{ 1. bind Vertex Array Object
glBindVertexArray(VAQ);

f{ 2. copy our vertices array in a buffer tor OpenGL to use
olBindBuffer(GL_ARRAY BUFFER, VBO);

glBufferData(GL ARRAY BUFFER, sizeof(vertices), vertices, GL STATIC DRAW);

{{ 3. then set our vertex attributes pointers

glVertexAttribPointer(®, 3, GL FLOAT, GL FALSE, 3 * sizeof(float), {void*)e);
glEnableVertexAttribArray({8);

¢ OpenGL automatically makes the connections

Tell OpenGL how to read the data

& Vertex array objects can be seen as containers linking the data (VBO) with how it 1s
interpreted (attribute pointers)

VAD 1 vBo1
attribute pointer 0 pos[0] pos[1] pos[2] pos[3] . pos[n]
attribute pointer 1
attribute pointer 2

artrlbutei;:.l-ninter 15 VBO 2
pos(0] col[0] posil] colll] . colln]

VAD 2

attribute pointer 0
attribute pointer 1
attribute pointer 2

attribute pointer 15

Example: Drawing a Triangle

& Steps

I

Create a window and OpenGL context
Send OpenGL data

Create a Vertex shader and Fragment shader
Tell OpenGL how to read the data

Set the Context for the rendering

Render the triangle

Set the Context for Rendering

& The hard part 1s done
& The shader program 1s complete
& The vertex array object has the data and how it should interpret it

¢ All that’s needed 1s to set the OpenGL context to them

glUseProgram(shaderProgram) ;
g__IEindUE-r*tE}nﬂ_urray (VAQ) ;

Example: Drawing a Triangle

& Steps

I

i

Create a window and OpenGL context
Send OpenGL data

Create a Vertex shader and Fragment shader
Tell OpenGL how to read the data

Set the Context for the rendering

Render the triangle

Render the Triangle

¢ Easy
[Fwnope - 0 x]

glDrawArrays(GL TRIANGLES, 8, 3);

References

De Vries, Joey. (2020). Learn OpenGL — Computer Graphics. Kendall & Welling Publishing.

¢ Free online at: https://learnopengl.com/

& Microsoft. (2018, 05 31). Windows GDI. Docs.microsoft.com.

https://docs.microsoft.com/en-us/windows/win32/gdi/windows-gdi

Microsoft. (2018, 05 31). Direct 3d 11 Graphics. Docs.microsoft.com.
https://docs.microsoft.com/en-us/windows/win32/direct3d11/atoc-dx-graphics-direct3d-
11

Khronos Group. Vulcan Overview. Khronos.org. https://www.khronos.org/vulkan/

https://learnopengl.com/
https://docs.microsoft.com/en-us/windows/win32/gdi/windows-gdi
https://docs.microsoft.com/en-us/windows/win32/direct3d11/atoc-dx-graphics-direct3d-11
https://www.khronos.org/vulkan/

