A

A
ALl

b 4 Recursion

AMAAAMAAM

&, &,
fhdh Ahdh
Ah AR

An Ah A

5“ V¥V VoWV Vi

G{_') 8[{3 recursion

Search
Everything Did you mean: recursion
Images . - . :
Recursion - Wikipedia, the free encyclopedia

Maps en.wikipedia.org/wiki/Recursion

_ Recursion is the process of repeating items in a self-similar way. For instance, when the
Videos surfaces of two mirrors are exactly parallel with each other the nested ...
News Formal definitions of recursion - Recursion in language

Fundamentals of Computer Science

* Recursion
A method calling itself
All good recursion must come to an end
A powerful tool in computer science
Allows writing elegant and easy to understand algorithms
A new way of thinking about a problem
Divide and conquer
A powerful programming paradigm
Related to mathematical induction

» Example applications
Factorial
Binary search
Pretty graphics
Sorting things

» Prove a statement involving an integer N
Base case: Prove it for small N (usually o or 1)

Induction step:
Assume true for size N-1
Prove it is true for size N

» Example:
ProveT(N)=1+2+3+..+N=N(N+1)/2forallN
Basecase: T(1)=1=1(1+1) /2
Induction step:

Assume true forsize N—1:1+2+ ...+ N-1=T(N-1)=(N-1)(N) / 2
T(N)=1+2+3+..+N-1+N

=(N-1)(N)/2+N

=(IN-1)(N)/2+2N /2

=(N—-1+2)(N)/2

=(N+1)(N) /2

RECURSION
Hello Recursion

e Goal: Compute factorial N! =1*2*3 ... * N

o B 0l =1
45¢ case: O 4l =4 %3 %2 %1 =24
o Induction step:
~ Assume we know (N — 1)! 4! = 4 * 31
— 3k
+ Use (N - 1)! to find N! I
21 =2 * 11
. 1! =1 * 9!
import sys
g ol = 1
def fact(N):
if N == 9;: €=—~~ TS ==L basecase

return 1

return fact(N - 1) * N &===~_ : qiction step

if __name__ == "_main__":
N = int(sys.argv[1])
print(str(N) + "! = " + str(fact(N)))

def fact(N):
print("start, fact " + str(N))
if N == 0:

return 1
step = fact(N - 1)
print("end, fact " + str(N))
return step * N

print("end base, fact " + str(N))

start, fact 4
start, fact 3
start, fact 2
start, fact 1
start, fact © <{-
end base, fact ©
end, fact 1

end, fact 2

end, fact 3

end, fact 4

41 = 24

=== 5 |evels of fact()

RECURSION
Recursion vs. Iteration

» Recursive algorithms also have an iterative version

def fact(N): def fact(N):
if N == 0: result = 1
return 1 for i in range(1, N+1):
return fact(N - 1) * N result *= i
return result

Recursive algorithm Iterative algorithm

» Reasons to use recursion:
o Code is more compact and easier to understand
o Easier to reason about correctness

» Reasons not to use recursion:

o If you end up recalculating things repeatedly (stay tuned)
o Processor with very little memory (e.g. 8051 = 128 bytes)

RECURSION
A Useful Example of Recursion

» Binary search

o Given an array of N sorted numbers

o Find out if some number t is in the list

o Do it faster than going linearly through the list, i.e. O(N)
» Basic idea:

o Like playing higher/lower number guessing:

Me ____________________ |You

I'm thinking of a number between 1 and 50
100.

Higher 75
Lower 63
Higher 69

72
Wow I'm super smart!

RECURSION

» Binary search algorithm
Find midpoint of sorted array
Is that element the one you're looking for?
If yes, you found it!
If target is < midpoint, search lower half
If target is > midpoint, search upper half

o Example: Is 5 in this sorted array?

12258@14145088

target (value) =5

low (index) = 0

high (index) 10

midpoint (index) (6 +10) / 2 =5

Binary Search

» Binary search algorithm
Find midpoint of sorted array
Is that element the one you're looking for?
If yes, you found it!
If target is < midpoint, search lower half
If target is > midpoint, search upper half

o Example: Is 5 in the sorted array?

12@58914145088

target (value)
low (index)

high (index)
midpoint (index)

| | I | (R |
—~ D ® Ul

J
RECURSION

Binary Search

» Binary search algorithm
Find midpoint of sorted array
Is that element the one you're looking for?
If yes, you found it!
If target is < midpoint, search lower half
If target is > midpoint, search upper half

e Example: Is 5 in the sorted array?

122@8914145088

target (value)
low (index)

high (index)
midpoint (index)

| I | A | I |
~ D> W U

1

" RECURSION

Binary Search

» Binary search algorithm
o Find midpoint of sorted array
o Isthat element the one you're looking for?
« If yes, you found it!
o Iftarget is < midpoint, search lower half
o If target is > midpoint, search upper half

e Example: Is 5 in the sorted array?

N

122()891414508889

N’

YES. Element at new midpoint is target!

12
RECURSION

Binary Search, Recursive Algorithm

def binarySearch(target, low, high, d):
mid = int((low + high) / 2)
print("low", low, "high", high, "mid", mid)

if d[mid] == target:
return True

if high < low:
return False

if d[mid] < target:

return binarySearch(target, mid + 1, high, d)
else:

return binarySearch(target, low, mid - 1, d)

if _name__ == "_main__":
d = [1, 2, 2, 5, 8, 9, 14, 14, 50, 88, 89]
target = int(sys.argv[1])
print("found " + str(target) + "? " + str(binarySearch(target, 0, len(d)-1, d)))

Missing base case

def fact(N):
return fact(N - 1) * N

% python FactBad.py 5
Traceback (most recent call last):
File "FactBad.py", line 20, in <module>
print(str(N) + "! = " + str(fact(N)))
File "FactBad.py", line 15, in fact
return fact(N - 1) * N
File "FactBad.py", line 15, in fact
return fact(N - 1) * N
File "FactBad.py", line 15, in fact

No convergence guarantee return fact(v - 1) * n

def badIdea(N):
if N == 1):
return 1.0
return badIdea(l + N/2) + 1.0/N

[Previous line repeated 996 more times]
RecursionError: maximum recursion depth
exceeded

Both result in infinite recursion = stack overtlow

" RECURSION
Sometimes We Don't Know...

def collatz(N):

print(N)
if N == 1:
return
elif N % 2 == 0O:
collatz(int(N / 2))
else:
collatz(3 * N + 1)

RECURSION

THE COUATZ CONJECTURE STATES THAT IF YOU
PICK A NUMBER, AND IF 1T5 EVEN DIVIDE 1T B
TWO AND IF T ODD MOLTIPLY IT BY THREE AND
ADD ONE, AND You REPEAT THIS PROCEDURE. LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WL SToP
CALNG TO SEE. IF YOU WANT TO HANG OUT.

http://xkcd.com/710/

1C
RECURSIVE GRAPHICS

Recursive Graphics

TI7|I7TlT Tty 7|l TlT|T
|1 r4d4|(-04 4|01 - -E
T TITT|lT|l—T =TTl TT|T
e I A I s s o o N g g Y
17T TlT7|l Tl Tl Tl7T ToIT|TlT T
1 1|41 01 0414 Ca| -1 .
T 7T Tl ™7l TT Tl TT T
i s R s I I O s v O s O o N I o e R
Il oyl Tl Tl o | &
B s IO s N I Y O s O s N IO s I O e I I
T T|IT™T =IJloTl—TlT—™T T7T|T
B I e s N Y O s s I o N I o O o i Y D
17T Tl7T Tl Tl Tl TlT T
1 1 1 31|01 -1 -1 ¢
T 7T T 7T LT T7T|TT T.T T.T T
B i A e s O s A s v O s S e s O o o R
TI7|17lT gyl Tl TlT|T
B s IO s A I O s Y s IO s A s O I
T Tl TlTl—Tl— Tl TlTTI|T
||| | ETh | Er | L7 | B
Tl7T Tl7|lly |l TlT|Ttlr T
41 1|14 1|04 1|01 .
v
m“._l._l._l._l._l._l._l._ll_l._l._l._l._l._l
1 A i O s R e s i s O o I o A
T TlT | Tl |l 7| Tl | TlT| T
W}}}FF}}}}}}FF}
>
@ TIT T Tl TT Tl T T.TI|T
— g o I s S e s I O e O o s I o R v i I L
1S
“IJI —_— - - -7 -7 — == —| = -

H-tree of order N

Draw an H
Recursively draw 4 H-trees

One at each "tip" of the original H, half the size
Stop once N = 0

Size

salinn
saline

T RECURSION PERFORMANCE
Fibonacci Numbers

°0,1,1,2,3,5, 8,13, 21, 34, 55, 89, 144, 233, ...
Fo=0
F,.=1
I:n = Fn-l + I:n-2

Fibonacci numbers.
A natural fit for recursion?

def fib(n):
if n ==
return ©
if n ==
return 1
return fib(n - 1) + fib(n -2)

Yellow Chamomile head showing the
arrangement in 21 (blue) and 13 (aqua)

siirals.

0.000
0.002
0.011
0.661
1.080
1.748
2.814
4.531
7-371
11.860
19.295
31.319
50.668
81.542

fib(2)

fib(4)

4/\

fib(3) fib(2)

\ /T~

fib(1) fib(1)

N\

fib(0)

fib(1)

fib(0)

Bad news bears:

Order of growth =
Exponential!

"T've got bad news"

" RECURSION PERFORMANCE
Efficient Fibonacci Version

1,2,3.5,8 13,21, 34 55,89 144, 233, 377

" RECURSION PERFORMANCE
Efficient Fibonacci Version

E 1,1)2,3,5,8,13, 21, 34,55, 89, 144, 233, 377

" RECURSION PERFORMANCE
Efficient Fibonacci Version

3.5 8 13,21, 34 55, 89, 144, 233, 377

24

Remember last two numbers
UseF ,andF,_ togetF,

0,1,1/2,3)5, 8,13, 21, 34, 55, 89, 144, 233, 377

def fibFast(n):
n2 = 0
nl =1
if n ==
return 0
for i in range(1, n):
ne = nl + n2

n2 = nl
nl = no
return nl

50

100

200

400
10,000,000
20,000,000
40,000,000
80,000,000
160,000,000

0.001
0.001
0.001
0.001
0.010
0.016
0.028
0.051
0.096

Summary

* Recursion
A method calling itself
All good recursion must come to an end
A powertful tool in computer science
Allows writing elegant and easy to understand algorithms
A new way of thinking about a problem

Divide and conquer @
A powerful programming paradigm g
Related to mathematical induction ")
» Example applications
Factorial
Binary search
Pretty graphics

Sorting things

Here is a recursive definition for
exponentiation. Write a recursive method
to implement this definition. The test main
is provided for you:

import sys

def fastExp(a, n):

Your code goes here..
if _name__ == "_main__":
a = int(sys.argv[1])
n = int(sys.argv[2]);

print(a, " raised to the

Open Moodle, go to CSCI 136, Section 11

Fast Exponentiation

1, ifn =0,
at= 1 (a:l""z‘)2 if n > 0 and n 1s even,
L @™y ifnisodd.

Recursive
Definition:

Remember — the exponentiation
operator in python is **. So 22 would be:
2%**2

n, is: ", fastExp(a, n))

Open the dropbox for today — Activity 3: Recursion
Drag and drop your program file to the Moodle dropbox
You get: 1 point if you turn in something, 2 points if you turn in something that is correct.

