
And You Thought There Couldn’t be More C++ 

Fundamentals of Computer Science  



Outline 

 Multi-File Programs 

 makefiles 



Multi-File Programs 

 Advantages 

 If you write classes in separate files (like in Java) you can use 
that class in multiple programs 

 Increases reusability 

 If you want to change something in a class, change it in one 
place and all programs using it reflect change 

 If multiple people are working on a project, makes sense to 
have separate files 

 Real world – many programmers will be working on one project 



Multi-File Programs 

 Class Libraries 

 We have included header files 

 These refer to files in the C++ library 

 Advantages 

 Reuse of code written by (and tested by) other people 

 You can write your own libraries if you like 



Multi-File Programs 

 Header files 

 Contain information about classes and functions 

 Usually .h extension – for “header” 

 Can then use the preprocessor directive #include to use them 

 e.g. #include <stdio.h> 

 stdio is a library of i/o files, stdio.h is the header file that describes 
all the available functions 

 Essentially describes the API to the functions and classes 

 



Multi-File Programs 

Mathematics.cpp 
source file 

Mathematics.h  
header file 



Multi-File Programs 

 



Multi-File Programs 

 Compiling 

 Let’s say you have three .cpp source files, rectangle.cpp, 
ellipse.cpp, and main.cpp  

 One approach to compilation is: 

 g++ -c rectangle.cpp 

 g++ -c ellipse.cpp 

 g++ -c main.cpp 

 g++ -o myprogram rectangle.o ellipse.o main.o 

 You need not specify the header files because these will be 
#include(d) in the .cpp files 

 



makefiles 

 As you get more and more files, compilation at the 
command line gets more and more tedious 

 You can put your compilation commands into a 
single file named “makefile” and use the Linux 
utility, “make” to do the compilation 

 Has similarities to Linux shell scripts 

 make program looks at list of requirements in the 
makefile, checks time stamps, and if something is 
out of date, re-compiles it 

 That way, only the files that have changed need to be updated 

 



makefiles 

 Like shell scripts, you can use variables in a makefile 

 Common variables: 

 CFLAGS = -g -Wall 

 CC = g++ 

 To use the variable, use ${varname} 

 e.g. ${CFLAGS} 

 You can also insert comments 

 Comments are preceded by the # symbol 

 



makefiles 

 Dependencies 

 Rules in a makefile that specify what needs to be done, in what 
order 

 [name of rule] : [list of other rules, separated by spaces]  
                             [list of source files, separated by spaces] 

 [TAB] command to execute in the event the rule is violated 

 Called “dependencies” because one rule can depend on the 
status of another 

 You *must* use a TAB character, not a sequence of spaces, to 
ensure that your commands will be interpreted correctly 

 You may have multiple tabbed commands to satisfy a rule 



makefile Example 

 Let’s say we have two files, main.cpp and help.cpp, in 
our program 

 The makefile might look like: 

main.o: main.cpp 
 
 g++ -c main.cpp 
 
help.o:  help.cpp 
 
 g++ -c help.cpp 
 
main.exe: main.o help.o 
 
 g++ main.o help.o –o main.exe 



makefiles 

 To run a makefile, simply type: 
 make 

 make will look for the file called makefile and 
execute the compilation commands 

 If you have several makefiles, you can name them 
different names (for example MyMakefile) and use 
the command: 
 make –f MyMakefile 

 If you want make to only execute one rule, call that 
rule: 
 make clean 



makefiles – A More Interesting Example 

# makefile for a frog project 
 
CC=g++ 
CFLAGS=-g –Wall 
RM=rm –f 
 
all: main helloworld 
 
frog.o: frog.h frog.cpp 
 ${CC} ${CFLAGS} –c frog.cpp 
main: main.o frog.o  
 ${CC} ${CFLAGS} –o main main.o frog.o 
helloworld: helloworld.cpp 
 ${CC} ${CFLAGS} –o helloworld helloworld.cpp 
clean: 
 ${RM} *.o main 

 



makefiles 

 Not all of your files need to be in the same directory 
to be compiled by a makefile 

 You can use any Linux command inside a makefile as 
a command (the tabbed parts) 

 You can use make with any compiler – that’s what 
the CC and CFLAGS variables were about in the last 
example 

 There are dependency generator program that will 
create makefiles for you if your program is very 
complex 



Summary 

 Multi-File Programs 

 makefiles 

 


