And You Thought There Couldn’t be More C++

Outline

Multi-File Programs

» Advantages
o If you write classes in separate files (like in Java) you can use
that class in multiple programs
« Increases reusability

o If you want to change something in a class, change it in one
place and all programs using it reflect change

o If multiple people are working on a project, makes sense to
have separate files

« Real world — many programmers will be working on one project

Multi-File Programs

Multi-File Programs

» Header files
o Contain information about classes and functions
o Usually .h extension — for “header”

o Can then use the preprocessor directive #include to use them
« e.g. #include <stdio.h>

« stdio is a library of i/0 files, stdio.h is the header file that describes
all the available functions

o Essentially describes the API to the functions and classes

Multi-File Programs

#include "Mathematics.h”
int Mathematics::add(int numl, int num2) {
return Mathematics::result = numl + num2;
I
int Mathematics::subtract(int numl, int num2) {
return Mathematics::result = numl - num2;

¥

int Mathematics::multiply(int numl, int num2) {
return Mathematics::result = numl * num2;

¥

int Mathematics::divide(int numl, int num2) {
return Mathematics::result = numl / num2;

¥

#ifndef MATHEMATICS H
#define MATHEMATICS H
#include <iostream>
class Mathematics

1

int result;

public:

int add(int numl,int num2);

int subtract(int numl,int num2);
int multiply(int numl,int num2);
int divide(int numl,int num2);

Multi-File Programs

#include <iostream:
#include <string>
using namespace std;
#include "Mathematics.h"
int main() {
int numl, num2, result;
Mathematics maths;
cout <<"Enter the first number:";
cinz»numl;
cout<<"Enter the 2nd number:";
cinz»num2;
result = maths.add({numl, num2);
cout <<"\nThe result of adding two numbers is: “"<<result<<endl;
result = maths.subtract{numl, num2);
cout <<"The result of subtracting two numbers is: "<<result<<endl;
result = maths.multiply({numl, num2);
cout <<"The result of multipltying two numbers is: "<<result<<endl;
result = maths.divide{numl, num2);
cout <<"The result of dividing two numbers is: "<<result<<endl;

Multi-File Programs

» Compiling

o Let’s say you have three .cpp source files, rectangle.cpp,
ellipse.cpp, and main.cpp

o One approach to compilation is:
« g++ -c rectangle.cpp
« g++ -c ellipse.cpp
© g++ -c main.cpp
« g++ -0 myprogram rectangle.o ellipse.o main.o

o You need not specify the header files because these will be
#include(d) in the .cpp files

As you get more and more files, compilation at the
command line gets more and more tedious

You can put your compilation commands into a
single file named “makefile” and use the Linux
utility, “make” to do the compilation

Has similarities to Linux shell scripts

make program looks at list of requirements in the
makefile, checks time stamps, and if something is
out of date, re-compiles it

That way, only the files that have changed need to be updated

» Like shell scripts, you can use variables in a maketfile

Common variables:
CFLAGS = -g -Wall
CC=g++

To use the variable, use ${varname}
e.g. ${CFLAGS}

* You can also insert comments
Comments are preceded by the # symbol

makefiles

» Dependencies
Rules in a makefile that specify what needs to be done, in what
order

[name of rule] : [list of other rules, separated by spaces]
[list of source files, separated by spaces]

[TAB] command to execute in the event the rule is violated

Called “dependencies” because one rule can depend on the
status of another

You *must* use a TAB character, not a sequence of spaces, to
ensure that your commands will be interpreted correctly

You may have multiple tabbed commands to satisfy a rule

Let’s say we have two files, main.cpp and help.cpp, in
our program

The makefile might look like:

main.o: main.cpp

g++ -C main.cpp
help.o: help.cpp

g++ -c help.cpp
main.exe: main.o help.o

g++ main.o help.o -o main.exe

To run a makefile, simply type:
make

make will look for the file called makefile and
execute the compilation commands

If you have several maketfiles, you can name them
different names (for example MyMaketfile) and use
the command:

make —f MyMakefile

If you want make to only execute one rule, call that
rule:

make clean

makefile for a frog project

CC=g++
CFLAGS=-g -Wall
RM=rm -f

all: main helloworld

frog.o: frog.h frog.cpp

${CC} ${CFLAGS} -c frog.cpp
main: main.o frog.o

${CC} ${CFLAGS} -0 main main.o frog.o
helloworld: helloworld.cpp

${CC} ${CFLAGS} -0 helloworld helloworld.cpp
clean:
${RM} *.o main

Not all of your files need to be in the same directory
to be compiled by a maketfile

You can use any Linux command inside a makefile as
a command (the tabbed parts)

You can use make with any compiler — that’s what
the CC and CFLAGS variables were about in the last
example

There are dependency generator program that will
create makefiles for you if your program is very
complex

Summary

