
And Even More and More C++ 

Fundamentals of Computer Science  



Outline 

 C++ Classes 

 Special Members 

 Friendship 



Classes 

 Classes are an expanded version of data structures 
(structs) 

 Like structs, the hold data members 

 They also hold functions as members 

 Can specify access permissions also 

 (Sounding a lot like Java, right?) 

 Defined with the keyword “class”: 



Classes 

 Access Specifiers: 

 private  

 Only accessible from within members of the same class or from 
“friends” 

 protected 

 Private access plus members of derived classes can have access 

 public 

 Accessible anywhere the object is visible 

 Default access is private 



Classes 

 An example: 

 

 

 

 

 To access data and function members: 



Classes 

 The full Rectangle example: 



Classes 

 The Scope Operator: 

 

 

 

 

 
 Used to define a member function of a class outside of the class 

definition 

 area() is defined within the class 

 set_values() is defined outside the class 

 Scope operator (::) specifies the class to which the function belongs 

 



Classes 

 Classes (just like structs) define a data type 

 As always, we can many objects of the class type 

 And each object will have its own member variables and 
functions that operate on those variables 



Classes 

 Constructors 

 Used to create a new object of the class data type 

 Initializes any member variables that need to be initialized 

 May do other work if needed 

 

 Just like in Java, the constructor function name is the same as 
the class name 

 They cannot be called like regular member functions 

 They are only executed once – when the object is instantiated 

 They have no return values – not even void 



Classes 

 Constructor Example 



Classes 

 Overloading constructors 

 Classes can have more than one constructor 

 All named the same, since they are constructors 

 But with different parameter lists 

 Remember the method signature in Java? 

 The default constructor is called when an object is declared but 
a constructor is not specified 

 This is different than a constructor with no parameters 

 

 An example would be appropriate here… 



Classes 

 



Classes 

 Member initialization 

 C++ offers a cleaner way of initializing member variables than 
does Java 



Classes 

 A subtle constructor example 



Pointers to Classes 

 



Classes 

 When you define a class, you are defining a new data 
type, just like in Java 
 This includes the member data and the operators on that data 

 Unlike Java, you can overload symbolic operators 

 

 

 

 

 

 These are defined with regular functions with a special 
name: operator 



Classes 

 



Classes 

 Overloaded operators 

 The parameter(s) expected for an overloaded operator are 
shown below (the “@” sign is just a place holder for the actual 
operator) 



Classes 

 Overloaded operators can be member functions – or 
not! 



Classes 

 this 

 Just like Java, C++ uses the keyword “this” to refer to itself 

 Difference is, “this” is a pointer 



Classes 

 Static members 

 Just like Java, a static member means there is only one 
common variable for all objects of that class 



Classes 

 Constant member functions (const) 

 When an object is instantiated by const, the access to its data 
members outside the class is read only 

 A constructor is still called to initialize variables – but can only 
be called once 



Classes 

 Const 

 Member functions specified as const cannot modify non-static 
data members 

 They cannot call other non-const member functions 

 

 Member functions can be overloaded based on const 
or not 

 You can have two functions of the same name, with one const, 
and one not (example next slide) 



Classes 

 Const overloading 



Classes 

 Template Classes 



Classes 

 To use template classes 



Classes 



Classes 

 Special Member Functions 



Classes 

 Default Constructor 

 The constructor called when objects are declared but not 
initialized with any parameters 

 This is supplied automatically 

 But just like Java, if a constructor of any kind is defined, the 
default constructor is no longer valid 



Classes 

 Default Constructor 



Classes 

 Destructors 

 The opposite of a constructor 

 They clean up any memory used by the object before deleting it 

 Same name as class/constructor, but starts with a “~” 



Classes 

 Copy Constructor 

 Default copy constructor does a “shallow copy” 

 Deep copy is done when pointer contents, not just addresses, 
are also copied 



Classes 

 Copy Assignment 

 Gives you the ability to copy objects not just on construction, 
but at any time 

 Really overloading the “=“ operator 



Summary 

 C++ Classes 

 Special Members 

 Friendship 


