
Even More C++

Fundamentals of Computer Science

Outline

 Dynamic Memory

 Data Structures

 Other Data Types

Dynamic Memory

 Fundamental data types take up a fixed size in
memory

 Memory can be allocated when the variables are declared

 There are times when memory size can only be
determined at runtime

 In these cases, programs need to dynamically allocate (and de-
allocate) memory

 This is done using the new and delete operators

new and new[]

 new is followed by a data type specifier and if there are
multiple elements needed, brackets are used, to specify
an array

 For example:

 In this example, a pointer to an integer is created, and
then a block of memory is allocated to store 5 of them

new and new[]

 So why not just create an array?

 Array size must be declared in one way or another at
compile time

 Using dynamic memory assigns memory at runtime
so you can use a variable memory size

 Memory is allocated at runtime from the heap

 There is no guarantee that there is enough memory to handle a
given request

Checking for Allocation Success

 By default, C++ will throw an exception if something
went wrong with memory allocation
 In this case, the program will terminate if the exception is not

handled (unlike Java which either requires you to “catch” an
exception or duck it

 You can tell C++ not to throw an exception and then deal
with it in your own code:

 Using exceptions is more efficient – we will talk about
those later

delete and delete[]

 C++ does not handle garbage collection for you

 You need to determine when a particular data item is no longer
needed and then remove it

 Use delete and delete[] to do this

 The “thing” deleted should be either something that was
created with new or new[] before, or it should be a null pointer
(in which case nothing happens)

An Example

Dynamic Memory in C

 C++ uses new and delete to allocate and free
memory

 C uses malloc, calloc, realloc and free

 Since C++ is built on C, you can still use these
functions, but you should not mix them

 if you use new on an item, deallocate it with delete

 if you use malloc, calloc or realloc, deallocate is with free

Data Structures

 A data structure is a group of data elements grouped
together under one name

 Not quite the same thing as a data type in Java

 Use struct to define a structure in C++

Data Structures

 Accessing data elements in a structure

An Example of struct

An Example of an Array of structs

Pointers to Structures

 The arrow operator -> is used to access structures
that have member elements

is equivalent to:

is equivalent to:

Nesting Structures

 Structures can be nested within other structures

Other Data Types: Aliases

 Two ways to create a type alias:
 typedef existing_type new_type_name;

 using new_type_name = existing_type;

 “using” is more generic, but “typedef” is likely found
more often in existing code

Other Data Types: Unions

 Declaration similar to struct, but meaning is very
different

 All three member elements use the same memory
space
 Memory allocated is the size of the largest

 In the example above, probably the size of a float

 Use this when you want to access an element in its
entirety or as an array of smaller elements

Union Example

Anonymous Unions

Enumerated Types (enum)

 You can use these names or their integer equivalents

Enumerated Types (enum class)

Summary

 Dynamic Memory

 Data Structures

 Other Data Types

