Even More C++

Outline

» Fundamental data types take up a fixed size in
memory
Memory can be allocated when the variables are declared

» There are times when memory size can only be
determined at runtime

In these cases, programs need to dynamically allocate (and de-
allocate) memory

This is done using the new and delete operators

new is followed by a data type specifier and if there are
multiple elements needed, brackets are used, to specify
an array

pointer
pointer

new type

new type [number of elements]

For example:

int * foor
foo = new int [5];

In this example, a pointer to an integer is created, and
then a block of memory is allocated to store 5 of them

So why not just create an array?

Array size must be declared in one way or another at
compile time

Using dynamic memory assigns memory at runtime
SO you can use a variable memory size

Memory is allocated at runtime from the heap

There is no guarantee that there is enough memory to handle a
given request

By default, C++ will throw an exception if something
went wrong with memory allocation

In this case, the program will terminate if the exception is not
handled (unlike Java which either requires you to “catch” an
exception or duck it

You can tell C++ not to throw an exception and then deal
with it in your own code:

int * foo:
foo = new (nothrow) int [5];
if {foo == nullptr) |
// error a3signing memory. lake measures.

}.

Using exceptions is more efficient — we will talk about
those later

delete and delete] |

» C++ does not handle garbage collection for you

o You need to determine when a particular data item is no longer
needed and then remove it

o Use delete and delete[] to do this

delete polnter;
delete[] pointer;

o The “thing” deleted should be either something that was
created with new or new[] before, or it should be a null pointer
(in which case nothing happens)

An Example

S/ rememb—o-matic How many numbers would you like to type? 5
#include <icatream> Enter number : 75
#include <new: Enter number : 436
using namespace std; Enter number : 10&7
Enter numbker : 8
int main {) Enter number : 32
{ ¥You have entered: 75, 436, 10&7, 3, 32,
int i,m;
int * pr
cout << "How many nurbers would vou like to type? ";
cin >> 1f

p= neWw (nothrow) int[i]:
if (p == nmullptr)
cout << "Error: memory could not be allocated™;
elae
{
for (n=0; n<i; n++)
{
cout << "Enter number: ";
cin >» p[n]:
1
cout << "You have entered: ":
for (n=0; n<i; n++)
cout << p[n] << ", ":
delete[] p:
}

return 07

C++ uses new and delete to allocate and free
memory

C uses malloc, calloc, realloc and free

Since C++ is built on C, you can still use these
functions, but you should not mix them

if you use new on an item, deallocate it with delete

if you use malloc, calloc or realloc, deallocate is with free

A data structure is a group of data elements grouped

together under one name
Not quite the same thing as a data type in Java

Use struct to define a structure in C++

Jtruct type name |

} ocbject names;

member typel member namel;
member typed member named;
member typel3 member name3;

atruct product | struct product |
int welght; int weight;

double price; double price;
b s } apple, banana, melcon;

product apple;
product banana, melcon;

apple.weight
apple.price
banana.weight
banana.price
melon.weight
melon.price

Data Structures

An Example of struct

J/ example about structures
#include <icstream>
#include <string>

#include <satream>

using namespace 3td;

struct movies t |

}

atring title;
int year:
mine, yours;

void printmovie (movies t movie)

int main ()

{

}

string mystr;

mine.title = "2001 A Space Odvasey™:
mine.year = 1968;

cout << "Enter title: ":

getline (cin,vyvours.title):

cout << "Enter year: ":

getline {cin,mystr):
atringatream{mystr) >> youra.year;

cout << "My favorite movie is:\n ";
printmovie (mine);

cout << "And youra ias:\n ":
printmovie (youra):

return 0;

void printmovie (moviea t movie)

{

i

cout << movie.title;
cout << " (" << movie.year << ")\n";

Enter title: Alien
Enter year: 1379

My favorite movie is:

2001 A Space Odysaey (1963)
And yours is:

Rlien (1979)

An Example of an Array of structs

// array of atructures Enter title: Blade Bunner
#include <icstream:- Enter year: 1982

#include <string> Enter title: The Matrix
#include <3stream> Enter year: 1993

u3ing namespace std; Enter title: Taxi Driver

Enter year: 1376
atruct moviea t

string title; ¥ou have entered these movies:
int year; Blade Bunner (1982)
} films [3]: The Matrix (1999)

Taxi Driwver (197&)
vold printmovie (moviea t movie);

int main ()

{
3atring my3tr;
int n;

for (n=0; n<3; ntt)
{
cout << "Enter title: ";
getline (cin,films[mn].title):
cout << "Enter year: ":
getline ({cin,my3tr);:
stringstream{mystr) >> films[n].year;
I

cout <¢ "“nYou have entered theae movies:w\n":
for (n=0; n<3; ntt)

printmovie (films[n]):
return 07

}

wold printmovie (movies t movie)

{

cout << movie.title;
cout << " (" << movie.year << ")\n";
I

The arrow operator -> is used to access structures
that have member elements

gtruct movies t |
string title;
int year;

}:

movies t amovie;
movies t * pmovie;

POOVie = gamovie;

pmovie->title is equivalent to: (*pmovie) .title
*pmovie.title is equivalent to: * (pmovie.title)
Expression What is evaluated Equivalent
a.b Member b of object =

a->b Member b of object pointed to by a {*a).b

a.b Value pointed to by member & of object a| (a.k)

Nesting Structures

gtruct movies t {
atring title:
int year;

atruct friends t {

3tring name;

3tring email;

movies t favorite movie;
} charlie, maria;

friends t * pfriends = &charlie;

charlie.name

maria.favorite movie.title
charlie.favorite movie.year
pfriends->favorite movie.year

» Two ways to create a type alias:
typedef existing type new_type name;
using new_type name = existing type;

typedef char C; uaing C = char;

typedef unaigned int WORD; u3ing WOED = unsigned int;
typedef char * pChar; using pChar = char *;
typedef char field [50]; using field = char [30];

C mychar, anctherchar, *ptcl;
WORD myword:
pChar ptc?;
field name;

» “using” is more generic, but “typedet” is likely found
more often in existing code

Declaration similar to struct, but meaning is very
different
union mytypes t |
char c;
int i;
float f:
} mytypes;
All three member elements use the same memory
space
Memory allocated is the size of the largest
In the example above, probably the size of a float

Use this when you want to access an element in its
entirety or as an array of smaller elements

Union Example

short hi;
short lo;
} a;
char c[4];
] mix;

Anonymous Unions

struct bookl t | struct bookd t |
char title[50]; char title[50];
char author[50]: char author[50]:
unicn | unicn {
float dellarsa; float dellars;
int vyen; int ven;
} price; }r
bookl; } booki:

bookl.price.dollars book2.dollars
bookl.price.yen book2.ven

Enumerated Types (enum)

} object_names;

|Enun colors t [bleack, blue, green, cyan, red, purple, yellow, Hhite};l

colors_t mycolor;

mycolor = blue;
if (mycolor == green) mycolor = red;

Enumerated Types (enum class)

enum class Colors {black, blue, green, cyan, red, purple, yvellow, whitel:;

Coloras mycolor;

mycolor = Colors::blue;
if (mycoclor == Coleora::green) mycoclor = Colors::red;

Summary

* Dynamic Memory
» Data Structures
» Other Data Types

