
Introduction to C++

Fundamentals of Computer Science

Outline

 Arrays

 Character Sequences

 Pointers

Arrays

 Arrays in C++ are very similar to Java arrays

 To declare an array:
int foo [5];

 To declare and initialize:
int foo [5] = { 16, 2, 77, 40, 12071};

int foo [] = { 16, 2, 77, 40, 12071};

Arrays

 If you declare and array and initialize it with fewer
values than specified, the remaining values will be
the default
int bar [5] = { 10, 20, 30 };

int baz [5] = { };

Accessing Array Values

 Just like in Java, provide the name[index]:

foo[2] = 75;

x = foo[2];

 What will happen in the following code?
int foo [5] = {16, 2, 77, 40, 12071};

foo[6] = 10;

cout << foo[6] << endl;

Accessing Array Values

 What just happened?!?

Multidimensional Arrays

 Arrays of arrays
int jimmy [3][5];

 Just a programming convenience – data is still
stored contiguously in memory – the following are
stored the same way:
int jimmy [3][5];

int jimmy [15];

Passing Arrays as Parameters

 You can pass an array as a parameter to a function

 Array is not copied – only a pointer to the array is passed

void someFunction(int arr[])

 {

 ….

 }

int myArray [40];

someFunction(myArray);

Passing Arrays as Parameters

 You can pass an multidimensional arrays as a
parameters also

 First dimension is left empty

void someFunction(int arr[][3][4])

 {

 ….

 }

int myArray [40][3][4];

someFunction(myArray);

Character Sequences

 A string is really just a sequence (array) of characters
char foo [20];

 You can use this to assign values:
char myWord[] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

 Or, C++ allows you to assign a string directly during
initialization:
char myWord[] = “Hello”;

 C++ will put the null character in the array automatically

 Note: this won’t work in subsequent code – you’ll
need to assign values individually

Character Sequences

 Strings and character arrays can be used
interchangeably with cin and cout

 But – arrays have a fixed size while strings have no
defined size

Character Sequences

 You can convert between the two:

Pointers

 When you declare a variable, and run the program, the
variable is placed in some location in memory

 That memory location has an address

 Memory can be addressed byte by byte, and each
subsequent location is one higher than the last
 For example, address 1776 will be followed by location 1777

 Let’s say you declare a variable:

 int year = 2018;

 You can find it’s address using the address operator, &:

 int * yearAddress = &year;

 The * (dereference) operator says I am a pointer, and I expect to hold
an address

Pointers

 When a variable is declared, you tell the program its
data type

 This tells the compiler how much memory is needed to store
that piece of data

 So, an int is guaranteed to be at least 16 bits, or two bytes

 It would be stored in two consecutive memory locations

 A pointer “points to”
the variable whose
address it stores

Dereference Operator

Pointers

 Reference (address) operator (&) and dereference
operator (*) are complimentary
 & can be read as “address of”
 * can be read as “value pointed to by”

 Since a pointer can refer to the value it is pointing to, it
needs to know the type of the value so it knows how
much memory it occupies
 To declare a pointer:
int * number;
char * character;
double * floatingPoint;

 Even though pointer point to different data of different
sizes, a pointer is the same size (it always holds an
address)

Pointers

Pointers and Arrays

The name of an array is really just a pointer to the first address where the array is stored
in memory, and the value in brackets [] is just an offset to that location

Pointer Arithmetic

Safe Pointers

Pointers to Pointers

void Pointers

 void pointers are not null – they point to a value that
has no type

 Which really means they can be used to point to any data type

 But, since the pointer doesn’t know the size of the data it is
pointing to, they can’t be used for dereferencing

 Need to do more work to get at the data pointed to

Invalid Pointers and Null Pointers

 Invalid pointers

 Null pointers

 Null pointer is *not* the same as a void pointer!!

Pointers to Functions

 You can pass a function as a parameter to another
function!

Summary

 Arrays

 Character Sequences

 Pointers

