Introduction to C++

Outline

Arrays in C++ are very similar to Java arrays

To declare an array:
int foo [5];

foo | | | |

int

To declare and initialize:
int foo [5] = { 16, 2, 77, 40, 12071},

0 1 2 3 4
foo | 16 | 2 | 77 | 40 | 12071 |

———
int

int foo [] = { 16, 2, 77, 40, 12071};

If you declare and array and initialize it with fewer
values than specified, the remaining values will be
the default

int bar [5] = { 10, 20, 30 };

] 1 2 3 4
bar | 10 | 20 | 30 | 0 | 0

|—|
int

int baz [5] = { };

] 1 2 3 4
baz | 0 0 0 0 0

|—|
int

» Just like in Java, provide the name[index]:

fool[0] fooll] fool[2] foal[3] fool4]
foo | | | |

foo[2] = 75;
x = foo[2];

» What will happen in the following code?
int foo [5] = {16, 2, 77, 40, 12071};
foo[6] = 10;
cout << foo[6] << endl;

Accessing Array Values

Source
Code Object Executable

File File File execuBble
code

if a<k llollool llollool
(Lilh ref) (Lils ref) oloooloo
do while ooolol11 ooolol11
Z=H-Y 10101011 10101011
(Lilh ref) (Lils ref) 11111100

axacutabla
code

10111101 object code
11100001 ondisk

00000011
oloooloon
10011101
11111100

1 . [
process image
in memaory

Arrays of arrays
int jimmy [3][5];

0 1 2 3 4

jimmy

2

Just a programming convenience — data is still

stored contiguously in memory — the following are
stored the same way:

int jimmy [3][5];
int jimmy [15];

Passing Arrays as Parameters

Passing Arrays as Parameters

A string is really just a sequence (array) of characters
char foo [20]: .,

You can use this to assign values:
char myWord[] = {‘H’, ‘e’, ‘1°, ‘1°, ‘0o’, “\O@’};
Or, C++ allows you to assign a string directly during
initialization:
char myWord[] = “Hello”;

C++ will put the null character in the array automatically

Note: this won’t work in subsequent code — you’ll
need to assign values individually

Strings and character arrays can be used
interchangeably with cin and cout

But — arrays have a fixed size while strings have no
defined size

// atrings and NTCS: What is your name? Homer
#include <icstream> Where do you live? Greece
#include <3tring> Hello, Homer from Greece!

uaing namespace atd:

int main ()
{
char gqueationl[] = "What i3 your name? ™:
string question? = "Where do you live? ™;
char anawerl [80]:
string anawer?;
cout << gueationl:
cin >> anawerl;
cout << gueationd;
cin »»> answerl;

cout << "Hello, ™ << answerl:
cout << " from " << answerZ << "I\n":
return 0;

}

Character Sequences

char myntcal[] = "some text™;

atring myatring = myntcar Jf/ convert c—3atring to string
cout << mystring; S/ printed a3 a library atring
cout << mystring.c _str(); // printed a3 a c-3tring

» When you declare a variable, and run the program, the
variable is placed in some location in memory

» That memory location has an address

» Memory can be addressed byte by byte, and each
subsequent location is one higher than the last
For example, address 1776 will be followed by location 1777
Let’s say you declare a variable:
int year = 2018;
You can find it’s address using the address operator, &:
int * yearAddress = &year;

The * (dereference) operator says I am a pointer, and I expect to hold
an address

Pointers

» When a variable is declared, you tell the program its

data type

This tells the compiler how much memory is needed to store

that piece of data

So, an int is guaranteed to be at least 16 bits, or two bytes

It would be stored in two consecutive memory locations

A pointer “points to”
the variable whose
address it stores

myvar = 23;
foo = semyvar;
bar = myvar;
myvar
25
1775 1776 1777
&y "

foo

1776

bar

25

Dereference Operator

myvar
2h
1775 1776 1777

&y \

foo

baz = foo; /S baz equal to foo (1776)
baz = *foo; /f/ baz equal to wvalue pointed to by foo (25)

Reference (address) operator (&) and dereference
operator (*) are compﬁmentary
& can be read as “address of”
* can be read as “value pointed to by”

Since a pointer can refer to the value it is pointing to, it
needs to know the type of the value so it knows how
much memory it occupies

To declare a pointer:
int * number;
char * character;
double * floatingPoint;
Even though pointer point to different data of different
sizes, a Smmter is the same size (it always holds an

address

Pointers

S/ more pointers firatwvalue iz 10
#include <icstream> secondvalue iz 20
u3ing nameapace 3td:

int main ()

{
int firstwalue = 5, 3gecondvalue = 15;
int * pl, * p&;

pl = efiratvalue; S/ pl = address of firatvalue
pd = saecondvalue; /S p2 = address of aecondvalue

#pl = 10; Jf wvalue pointed te by pl = 10

*pd = *pl; S/ wvalue pointed to by pd = wvalue pointed to by pl
pl = p2; /f pl = p2 (value of pointer ia copied)

*nl = 20; /! value pointed to by pl = 20

cout << "firstvalue ig "™ << firatwvalue <« "\n':
cout << "secondvalue iz " << gecondwvalue << "\n':
return 0:

Pointers and Arrays

S/ more pointers 1o, 20, 30, 40, 54,
#include <icatream>
u3ing namespace 3td;

int main ()
{
int numbera[5]:
int * pr
p = numbkers; *p = 10;
p+t+; *p = 20;

P = snumbers[2]r *p = 30;
p = numbers + 3; *p = 40;
p = numbers; *{p+d) = 50;

for {(int n=0; n<S; n++)
cout << numbers[n] << ", ";

return Or
}

a[5] = 0; f/f a [offset of 5] = 0
*{a+5) = 0; /f pointed to by {(at+3) =10

The name of an array is really just a pointer to the first address where the array is stored
in memory, and the value in brackets [] is just an offset to that location

Pointer Arithmetic

char *mychar;
ahort *myshort;
long *mylong:

++mychar;
++myshort;
++mylong:

1000 1001

3006 3007

mlong 1
mylong ++

Satfe Pointers

ock: reading p
error: modifyving p, which ia conat—qualified

S/ pointers as argumentsa:
#include <icatream>
using namespace 3td:

vold increment mll (int* start, int* stop)
{
int * current = 3tart:
while (current '= stop) |
++{*current); // increment value pointed
++current; /S increment pointer
1
i

woid print all (const int* 3tart, conat int* atop)
f
const int * current = start;
while (current '= atop) |
cout << *current << "\n';
++ocurrent: // increment pointer
I
I

int main ()

f
int numkera[] = [10,20,30}:
increment_all (numbers,numbers+3);
print_all (numbers,numbers+3);
return 0;

Pointers to Pointers

voild Pointers

» void pointers are not null — they point to a value that
has no type
Which really means they can be used to point to any data type

But, since the pointer doesn’t know the size of the data it is
pointing to, they can’t be used for dereferencing

Need to do more work to get at the data pointed to

// increaser ¥, 1603
#include <iocstreams
using namespace 3atd;

void increase (void* data, int paize)
{
if { paize == szizeof(char) }
{ char* pchar; pchar={char*)data; ++(*pchar); }
elae if (pasize == aizeof(int) }
{ int* pint; pint={int*)data; ++{*pint): }
I

int main ()

{
char a = "¥";
int b = 1602;
increase (sza,3izeci(a)):
increase (sb,aizecf{b)):
cout << a << ", " << b << "\n";
return 0;

Invalid Pointers and Null Pointers

» Invalid pointers

int * p; JS/ uninitialized pointer (local variable)

int myarray[1l0]:
int * g = myarray+20; /J/ element out of bounds

» Null pointers

0;
nullptr;

int * p
int * g

int * r = NUOLL:?

» Null pointer is *not* the same as a void pointer!!

Pointers to Functions

» You can pass a function as a parameter to another
function!

Jf pointer to functions g
#include <io3atreams
u3ing namespace 3td;

int addition (int a, int b)
{ return {at+b); }

int subtraction (int a, int b)
[return {a-k): }

int cperation (int x, int ¥, int (*functocall) {int,int})
{

int gr

g = (*functocall) (x,v):

return (g):

}

int main ()
{
int m,n;
int (*minus) {int,int) = subtraction;

m operation (7, 5, addition):;
n operation (20, m, minus3);
cout <<n;

return 0;

Summary

* Arrays
» Character Sequences
» Pointers

