
More Linux – Piping and Redirection

Fundamentals of Computer Science

Outline

 File and Directory Permissions

 File Content

 Finding Files

 Sorting Files

 File Compression

 Processes

 Pipes

 Input/Output Redirection

 Controlling Processes

File and Directory Permissions

Permission File Directory

read User can look at the
contents of the file

User can list the files in the directory

write User can modify the
contents of the file

User can create new files and remove
existing files in the directory

execute User can use the
filename as a Linux
command

User can change into the directory, but
cannot list the files unless they have read
permission. User can read files if they
have read permission on them.

Changing File Permissions

 chmod options files

 Two forms:
 options as a sequence of three octal digits

 first digit is for owner permissions

 second for group permissions

 third is for everyone else

 chmod 600 private.txt

-rw-------

Permission Binary Octal

--- 000 0

--x 001 1

-w- 010 2

-wx 011 3

r-- 100 4

r-x 101 5

rw- 110 6

rwx 111 7

Changing File Permissions

 chmod options files

 Second form:

 options as a sequence of symbols

 u – user, g – group, o, other, a – all, r – read, w – write, x –
execute

 “+” – add permission, “-” delete permission

 chmod ug=rw,o-rw,a-x private.txt

-rw-rw----

File Contents

 file filename(s)
 Analyzes a files contents

 head, tail filename
 Displays the first or last few lines in a file

 You can specify number of lines

File Contents

 od options filename
 Displays binary file contents in different formats

Finding Files

 find directory -name targetfile -print

 which command

 locate string

Finding Text in Files

 grep options patterns files

 Stands for General Regular Expression Print

 egrep options patterns files

 Stands for Extended grep
 Can join expressions with or ‘|’, can use parentheses for

grouping

 Can use other regular expression operators:

 ?, *, +, {N}, {N,}, {N,M}

Sorting File Contents

 sort filenames

 uniq filename
 Removes duplicate adjacent lines in a file, handy when

combined with sort:

File Backup – tar – and Compression

 To create a disk file tar archive:

 tar -cvf archivename filenames

 To list the contents of an archive:

 tar -tvf archivename

 To restore files from a tar archive:

 tar -xvf archivename

 To compress files in a tar archive:

 compress filename

 Or:

 gzip filename

Processes

 A process is a program in execution

 Each has a unique process identifier (PID)

 The first process started when Linux boots is init

 All processes are children of init

 Can be any executing program:

 Your running Java program

 A command you are executing

 A daemon started by the Linux kernel

 Etc.

Pipes

 Pipe operator ‘|’ creates concurrently executing
processes which pass data directly to one another

 Used to combine system utilities together

Input/Output Redirection

 Linux treats everything as a file

 Including standard input (keyboard), standard output (screen)
and standard error (also the screen)

 We can redirect input or output from these “files” using the
redirection operators < and >

 The “arrow” points to where the input/output goes

Redirecting Standard Output

 To redirect standard output to a file instead of a
screen, use the > operator:

 This will create a new blank file each time

 If you want to append to a file, use >>

Redirecting Standard Error to a File

 Standard input (0), standard output (1) and standard
error (2) have those numbers associated with them

 To output any error messages to a file, use 2>

 To output results to one file and errors to another:

 find . –print 1>files 2>errors

 This is very handy when you are compiling a
program and you get a whole list of error messages

Redirecting Standard Input

 Input will be read from a file rather than from
keyboard input

 Remember – the “arrow” points to where the data
will go

 In this case it will come from a file and go into the command
“cat”

Controlling Processes

 You can run several processes at the same time
 Processes can run in the foreground (the thing you currently

see) or in the background (you don’t see it running, but it is)

 To start a process in the background, use & at the
end of the command line:

 [1] is the job number and 27501 is the process id
(PID)

 Note: if your background process prints to the
screen, it will show up as you’re doing something else

Controlling Processes

 To put the current process in the background:

 Type Ctrl-Z

 To bring a background process to the foreground:

 fg %<job number>

 To see all of the processes you have running:

 ps

Controlling Processes

 What if you have a process you want to stop? (Maybe
it’s in an infinite loop, maybe… it’s just a bad
process?)

 You can use:

 kill %<job number> OR

 kill <PID>

 These are polite ways of asking the process to terminate

 Processes are not always polite in return…

 kill -9 <PID>

 This will kill them on contact

Summary

 File and Directory Permissions

 File Content

 Finding Files

 Sorting Files

 File Compression

 Processes

 Pipes

 Input/Output Redirection

 Controlling Processes

