
1

CSCI 136 Written Exam #2 Name: __________________________________
Fundamentals of Computer Science II
Spring 2014

This exam consists of 5 problems on the following 6 pages.

You may use your double-sided hand-written 8 ½ x 11 note sheet during the exam. No computers, mobile
devices, cell phones, or other communication devices of any kind are permitted.

If you have a question, raise your hand and I will stop by. Since partial credit is possible, please write
legibly and show your work.

Problem Points Score

1 10

2 12

3 10

4 10

5 12

Total 54

2

1. Arrays, loops, strings (10 points). Consider the following program:

public class Prob1
{
 public static void main(String [] args)
 {
 final int ROWS = Integer.parseInt(args[0]);
 final int COLS = Integer.parseInt(args[1]);
 final int SUM = Integer.parseInt(args[2]);
 String [] lines = new String[ROWS];

 for (int row = 0; row < ROWS; row++)
 {
 lines[row] = "";
 for (int col = 0; col < COLS; col++)
 {
 if ((row + col) == SUM) lines[row] += "*";
 else lines[row] += ".";
 }
 }
 for (String s : lines)
 System.out.println(s);
 }
}

Below are five example executions of the program. Give the output produced by the program. If the
given input would cause a runtime error, write "error".

Command line Output

% java Prob1 2 2 1

 .*
 *.

% java Prob1 2 3 1

 .*.
 *..

% java Prob1 2 3 -1

 ...
 ...

% java Prob1 3 4

 error

% java Prob1 2 4 3 5.5

 ...*
 ..*.

3

2. File I/O, collections (12 points). You are developing a program that computes the total sales for each
product your company sells. The program reads data from the filename specified as the first command-line
argument. The file has one sale logged on each line. Lines have three whitespace-separated columns: 1)
product name (a string), 2) quantity (a positive integer), and 3) price per unit (a double). For example:

banana 12 0.23
apple 1 0.50
orange 5 0.30
apple 4 1.00

The program prints to standard output, in no particular order, the name of all unique products and the
total dollar amount sold of each product (rounded to two decimal places). The output for the above file is:

orange 1.50
banana 2.76
apple 4.50

If the filename given as the first command-line argument is not found, it prints "Failed to open file!" and
exits. If something else goes wrong parsing data in the file, it prints "Error parsing file!" and exits. Place
letters in the underlined spaces to create a working implementation. Letters may be used 0 or more times.

public static void main(String[] args)
{
 HashMap__W__ map = new HashMap__W__();
 try
 {
 Scanner scanner = new Scanner(__F__);
 while (scanner.hasNext())
 {
 String name = scanner.next();
 int qty = scanner.nextInt();
 double price = scanner.nextDouble();

 if (map.containsKey(__A__))

 map.__H_(name, map.__G_(name) + qty * price);
 else

 map.__H_(name, qty * price);
 }
 scanner.close();
 }
 catch (__O__ e)
 {
 System.out.println("Failed to open file!");
 return;
 }
 catch (__N__ e)
 {
 System.out.println("Error parsing file!");
 return;
 }

 for (Map.Entry<String, Double> entry : map.entrySet())

 System.out.printf(__K__, __Q__, __R__);
}

A. name

B. qty

C. price

D. args[0]

E. args.length

F. new File(args[0])

G. get

H. put

I. Double

J. "%1 %2\n"

K. "%s %.2f\n"

L. "%s %2d\n"

M. "%s %f"

N. InputMismatchException

O. FileNotFoundException

P. Error

Q. entry.getKey()

R. entry.getValue()

S. entry.get(name)

T. entry[name]

U. entry[price]

V. <char[], double>

W. <String, Double>

X. <String, double>

Y. <String, Int>

Z. <double, String>

4

3. Multiple choice (10 points, 2 points each). For each question, circle the best answer.

a) You are developing a program that represents the concentrations (in parts per million) of a particular
contaminant at various locations in a cubic meter of water. You want to store 1000 equally spaced
independent measurements within the volume of water. Which of the following is a variable declaration
that is best suited for storing the data (best = compiles and only uses as much memory as necessary)?

I. int ppm = new int[1000];
II. int [] ppm = new Integer[1000];

III. int [][][] ppm = new int[10][10][10];
IV. int [2] ppm = new int[10][10];
V. int [][][] ppm = new int[333][333][334];

b) You are benchmarking an algorithm that takes an input of size N. For an input of size N=5,000, the
algorithm took 2.1 minutes. For an input of size N=10,000 it took 4.1 minutes. For an input of size N=20,000
it took 8.2 minutes. Which of the following best describes the order of growth of the algorithm:

I. O(1)
II. O(N)

III. O(N2)
IV. O(N3)
V. O(2N)

c) You have an object named obj of the class MyObject. MyObject has an instance method foo() declared
using the static keyword. Which of the following is TRUE:

I. Only one thread can be executing the foo() method of obj at any one point in time.
II. Only one thread can be executing any static method of obj at any one point in time.

III. The foo() method can only use instance variables declared as private.
IV. The foo() method can only use instance variables declared as static.
V. The foo() method can only call instance methods declared as synchronized.

d) You have an object named obj of the class MyObject. MyObject has an instance method foo2()
declared with the synchronized keyword. Which of the following is TRUE:

I. Only one thread can be executing any method of obj at any one point in time.
II. Only one thread can be executing any synchronized method of obj at any one point in time.

III. The foo2() method can only use instance variables declared as private.
IV. The foo2() method can only use instance variables declared as static.

I. The foo2() method can only call instance methods declared as synchronized.

e) Why do computer scientists love using collection data types based on a hash function?

I. Because items can be retrieved from or put into the collection in constant time.
II. Because items can be retrieved from or put into the collection in amortized exponential time.

III. The hash function provide both type-safety and thread-safety.
IV. The hash function puts data into buckets that reduce the overall memory required by the collection.
V. Hash-based collections provide sorting in constant time.

5

4. Matching (10 points). Match each description of a computer science/Java programming concept with
the best corresponding letter. Each letter will be used at most once.

B
Refers to the ability of a Java class to work with objects of any reference
type.

A. Overloading

B. Generics

C. Layout manager

D. Hash search

E. Server

F. Overriding

G. Binary search

H. Widget

I. Merge sort

J. Regular
expressions

K. Activity

L. Intent

M. Abstract class

N. Event handler

O. Threaded

P. Iterable

Q. Comparable

R. Interface

S. JFrame

T. Runnable

U. Reference

V. JPanel

W. Collection

X. Primitive

Y. Client

Z. JWindow

A
When a class defines multiple methods with the same name but different
signatures.

F
When different classes in a class hierarchy define methods with the same
name and the same signature.

G Searches a sorted list in O(log N) time.

I Sorts a list of items in O(N log N) time.

K
In Java Android programming, this typically corresponds to a screen in the
user interface.

J A compact language for performing string matching and manipulation.

C Handles how different widgets are arranged in a GUI.

N Responds to things such as mouse or button clicks in a GUI.

Y
In Java socket programming, this side must specify the domain name/IP
address and port number of its communication partner.

E
In Java socket programming, this side calls the accept() method and
typically spins up a thread to handle each connection.

S
In Java desktop GUI programming, this class is typically instantiated or
extended.

V
In Java desktop GUI programming, this class can as a place to draw graphics
or for as a container for grouping interface elements together.

M
A Java construct that may include implemented methods but which itself
cannot be instantiated.

R
A Java construct that specifies method signatures but is forbidden from
having any implemented methods.

Q
Implementing this Java interface allows a collection of objects of a particular
type to be easily sorted.

P
Implementing this Java interface allows a collection of objects of a particular
type to be looped over via an enhanced for-loop (aka for-each loop).

T
Implementing this Java interface allows code to be executed on a separate
thread.

U Data types that must be instantiated with the new operator before use.

X
Data types that do not need to be instantiated with the new operator before
use.

6

5. Generics and linked structures (12 points). The following class implements a first-in first-out (FIFO)
queue abstract data type (ADT) using Java generics. The ADT uses a linked list data structure with instance
variables that track: the beginning of the list, the end of the list, and the size of the list.

a) Fill in the missing code in the underlined sections:

public class MyQueue<E>
{
 private class Node
 {
 private E item;
 private Node next;
 }

 private Node first = null;
 private Node last = null;
 private int size = 0;

 // Check if the queue is empty
 public boolean isEmpty()
 {

 return (first == __________null____________________);
 }

 // Return the current number of items in the queue
 public int size()
 {
 return size;
 }

 // Add a new item to the queue

 public void enqueue(______________E____________________ s)
 {

 Node n = ________________new Node()__________________;
 n.item = s;

 if (isEmpty())
 {
 first = n;
 last = n;
 }
 else
 {
 last.next = n;
 last = n;
 }
 size++;
 }

7

5. Generics and linked structures (continued)

 // Remove an item from the queue (the item that has been in the queue the longest)
 public E dequeue()
 {
 if (isEmpty()) throw new RuntimeException("Queue is empty!");

 E result = _______________first.item___________________;
 first = first.next;
 size--;

 if (isEmpty())
 last = null;

 return _______________result___________________;
 }

 // A string representing the queue, e.g. program in part b returns "the cat sat "
 public String toString()
 {
 String result = "";

 Node current = ________________first__________________;

 while (current != _____________null_________________)
 {
 result += current.item + " ";

 current = _______________current.next___________________;
 }

 return result;
 }
}

b) Draw a diagram showing the linked list structure resulting from the following program. Be sure to include

in your diagram where the first and last instance variables point to:

MyQueue<String> q = new MyQueue<String>();
q.enqueue("the");
q.enqueue("cat");
q.enqueue("sat");

