
1

CSCI 136 Written Exam #0 Name: __________________________________
Fundamentals of Computer Science II
Spring 2013

This exam consists of 5 problems on the following 7 pages.

You may use your single-side hand-written 8 ½ x 11 note sheet during the exam. You may use a simple
handheld calculator. No computers, mobile devices, cell phones, or other communication devices of any
kind are permitted.

If you have a question, raise your hand and I will stop by. Since partial credit is possible, please write
legibly and show your work.

Problem Points Score

1 8

2 15

3 12

4 12

5 12

Total 59

2

1. Loops, Input, Exceptions (8 points). Consider the following program:

public class Prob1
{
 public static void main(String[] args)
 {
 int i = 0;
 double d = 0.0;
 for (String s : args)
 {
 try
 {
 d += Double.parseDouble(s);
 i++;
 }
 catch (NumberFormatException e)
 {
 }
 }
 System.out.printf("%d / %d : %.2f\n", i, args.length, d);
 }
}

Below are four example executions of the program. Give the output produced by the program. If the
given input would cause a runtime error, write "runtime error". If it would cause a compile error, write
"compiler error".

Command line Output

% java Prob1 1.0 2.0 0.5

3 / 3 : 3.50

% java Prob1 -1 -2 -0.5

3 / 3 : -3.50

% java Prob1 1.0 two 0.5

2 / 3 : 1.50

% java Prob1

0 / 0 : 0.00

3

2. Inheritance, Collections (15 points). Consider the class hierarchy given on the last page of the exam.

a) Which data types could you successfully create with the new operator? Circle all that apply.
I. Person

II. Student
III. Employee
IV. Faculty
V. Staff

b) Assume someone has declared an array of type Employee. Concrete objects of what types could be
stored in this array? Circle all that apply.

I. Person
II. Student
III. Employee
IV. Faculty
V. Staff

c) The toString() method in the class Faculty is an example of what? Circle the single best answer.

I. Overloaded method
II. Overridden method
III. Polymorphism
IV. Auto-boxing
V. Ducking an exception

d) The constructors in the class Staff are an example of what? Circle the single best answer.

I. Polymorphic methods
II. Abstract methods
III. Overloaded methods
IV. Overridden methods
V. Auto-unboxed methods

e) Consider the following code snippet:

 ArrayList<Faculty> list = new ArrayList<Faculty>();
 // ... (code that adds a bunch of faculty members)
 Collections.sort(list); // sort by number of advisees

You get the following compile error:
Bound mismatch: The generic method sort(List<T>) of type Collections is not
applicable for the arguments (ArrayList<Faculty>). The inferred type Faculty is
not a valid substitute for the bounded parameter <T extends Comparable<? super T>>

What do you need to do to the Faculty class to make the sort work? Circle all that apply.
I. Add “implements Comparable<Faculty>” to the class declaration.

II. Add “implements Comparable<ArrayList<Long>>” to the class declaration.
III. Add “implements Comparable” to the declaration of the Faculty class.
IV. Add “implements Comparable<Integer>” to the class declaration.
V. Add a method “public int compareTo(Person other)”

VI. Add a method “public void sort(ArrayList<Faculty>)”
VII. Add a method “public int compareTo(Faculty other)”

4

f) Various instance variables are declared in the class hierarchy. Put a checkmark in the boxes

corresponding to the instance variables (left column) that are directly accessible in instance methods of

each class (top row). That is, instance variables that could be used without going through another method.

 Person Student Employee Faculty Staff
name X X X X X
id X
gpa X
totalCredits X
salary X X X
sickDays X
advisees X
tenured X
safety X

g) Each Faculty object keeps track of the list of student ID’s that faculty member is responsible for. Advisees

can be added and removed one-at-a-time by ID. Add code to the following three methods to correctly

implement this functionality:

public Faculty(String n, int sal, boolean ten)
{
 super(n, sal);
 this.tenured = ten;
 advisees = new ArrayList<Long>();
}

public void addAdvisee(long id)
{
 advisees.add(id);
}

public boolean removeAdvisee(long id)
{
 return advisees.remove(id);
}

5

3. Loops, Conditionals, String (12 points). A school converts letter grades to a value as follows:

A student’s GPA (grade point average) is computed by using these floating-point values weighted by the
number of credits of the class in which each grade was earned. So for example, if a student has completed
two classes, getting an A in a 4-credit class and a B- in a 3-credit class, his GPA is:
 (4 * 4.0 + 3 * 2.7) / 7 = 3.442857

a) Complete the following helper method that converts a String containing a letter grade to its floating-

point value. Your method should work regardless of whether the grade is in upper- or lower-case. Recall

that the String data type has methods toUpperCase() and toLowerCase(). If the passed in grade is not

a grade in the above table, throw a RuntimeException indicating “Invalid grade”.

private double convertGrade(String grade)
{
 String [] grades = {"A", "A-", "B+", "B", "B-", "C+", "C", "C-", "D", "F"};
 double [] val = {4.0, 3.7 , 3.3 , 3.0, 2.7 , 2.3 , 2.0, 1.7 , 1.0, 0.0};

 for (int i = 0; i < grades.length; i++)
 {
 if (grade.toUpperCase().equals(grades[i]))
 return val[i];
 }
 throw new RuntimeException("Invalid grade");
}

b) Using your convertGrade() method, implement the addCourse() method in the Student class from
the diagram on the last page of the exam. Your method should result in updating the object’s instance
variables so as to reflect the student’s new GPA and total credits.

public void addCourse(String grade, int credits)
{
 double cum = gpa * totalCredits;
 cum += convertGrade(grade) * credits;
 totalCredits += credits;
 gpa = cum / totalCredits;
}

A A- B+ B B- C+ C C- D F

4.0 3.7 3.3 3.0 2.7 2.3 2.0 1.7 1.0 0.0

6

4. Exceptions, Collections (12 points).

a) Java has both checked and unchecked exceptions. Briefly describe the difference. Provide an example of
a typical exception of each type.

Checked exceptions must be placed within a try-catch block (otherwise you will get a compile error). An
example is FileNotFoundException which must be caught when creating a PrintWriter object.

Unchecked exception are not required to be in a try-catch block. Normally this our a programming error
such as the ArrayIndexOutOfBoundsException or NullPointerException.

b) Describe a problem where a list abstract data type (ADT) would be most appropriate. Why is a list the
best choice for this problem?

Storing a list of names in alphabetical order. The list ADT tracks the order of elements in the collection
which would be required if we wanted to keep them in a certain order.

c) Describe a problem where a map abstract data type (ADT) would be most appropriate. Why is a map
the best choice for this problem?

Keeping track of the number of times a set of words have each been seen in a large text file. The map ADT
allows us to quickly find a given word in the collection and modify its value.

d) Describe a problem where a set data type (ADT) would be most appropriate. Why is a set the best
choice for this problem?

Creating a spell checking program. The set would track words that are in a known dictionary of correctly
spelled words. The set ADT allows us to determine if a given key is present or not in a collection.

7

5. Methods (12 points). Match the method description on the left with the best method on the right.
Assume candidate methods appear inside a class named Book. The Book class knows things like the author,
title, and all the text of a book (the exact details are not important). Not every letter will be used. Each
letter will be used at most once.

__E__

A method that can determine if a Book
contains exactly the same text as another
Book.

A. public String toString()

B. public static String toString()

C. public void toString(String s)

D. public boolean foo(String s)

E. public boolean foo(Book a)

F. public boolean foo()

G. public int [] foo(String [] s)

H. public int foo(ArrayList<String> s)

I. public int foo(HashSet<String> s)

J. public int foo(Book a)

K. public HashSet<String> foo(HashSet<String> s)

L. public String [] foo()

M. public void foo(String s)

N. public Book()

O. public Book(Book a)

P. public Book(other)

Q. private Book(Book a)

__A__

You have an object c of type Book. This
method is called implicitly by the following
line:
 System.out.println(c);

__G__

A method that can calculate how many
times each word in a set of words appears
in a Book. For example, the method might
calculate that “whale” occurs 10 times and
“ocean” appears 17 times.

__O__

A copy constructor that creates a Book
based on another Book.

__J__

A method that can return the count of the
number of words that overlap in two Book
objects.

__K__

A method that can return the set of
possible misspelled words in a Book given a
passed in dictionary of known good words.

8

This page intentionally left blank.

9

