
And Even More and More C++

Fundamentals of Computer Science

Outline

 C++ Classes

 Friendship

 Inheritance

 Multiple Inheritance

 Polymorphism

 Virtual Members

 Abstract Base Classes

 File Input/Output

Friendship

 Friend functions

 A non-member function in a class marked as “friend” makes it
so that other instantiated objects of the same type can access
each other’s information

Friend Function Example

More Friendship

 Friend Classes

 A friend of a class can access protected and private items
within that class

Friend Class Example

Inheritance

 Base class is the parent class

 Derived classes are the children

 Children inherit the members of its parent

 Children can also add their own members

Inheritance Example

Access Permissions

 External access permission to class data

 Inherited members inherit access permissions dependent
on how they are declared
 Public – same access permissions (default for struct inheritance)

 Protected – public and protected members inherited as protected

 Private – all inherited members are private(default for class
inheritance)

Inheritance

 What gets inherited?

 A publicly derived class inherits everything except:

 constructors and destructor

 assignment (operator=)

 friends

 private members

 this means that private variables are not inherited

 much like Java, need to provide getters and setters

 Even though not inherited, constructors and destructor are
automatically called by the child class

Inheritance Example

Multiple Inheritance

 Couldn’t do this in Java!

 Done by specifying more than one base class
separated by commas

Multiple Inheritance Example

Polymorphism

 Key concept:

 A pointer to a derived class is type-compatible with a pointer
to its base class

 This means we can use base class operations on different types
of derived classes

 And that means… polymorphism!

Polymorphism Example

Virtual Members

 A member function that can be redefined in a
derived class

 Like an abstract method in Java

Virtual Member Example

Abstract Base Classes

 Very similar concept to Java abstract classes

 A class that is not intended to be instantiated

 Can contain “pure virtual” functions

 Functions with no definition

 A class with at least one pure virtual function is an abstract
class

Abstract Base Class Example

Dynamic Allocation and Polymorphism

File Input/Output

 We’ve already done keyboard input and screen
output

 But that doesn’t preserve data

 The Homework.cpp lab assignment is fairly useless since all the
entered data goes away when you quit the program

 Just like in Java, we can read from files and write to
files

 ofstream: stream used to write to file (output file stream)

 ifstream: stream used to read from a file (input file stream)

 fstream: stream to both read from and write to a file (file
stream)

File Input/Output Example

 Declare a file by its operation type

 Open the file

 Perform read/write operations on the file

 Close the file

Opening a File

 A file can be opened in different modes:

 Modes can be combined using the bitwise or
operator (|):

Files

 Can have either text or binary files (just like Java)

 Can create and open file in a single statement:

 Can then check to see if the file opened successfully:

 After file input/output is complete, should close the
file:

Moving Around in a File

 All file streams keep track of at least one position in
the file

 get and put positions

 Input streams keep an internal “get” position

 This is where the next data item will be read from

 Output streams keep an internal “put” position

 This is where the next data item will be written

 tellg() and tellp() are functions that retrieve the
position

 seekg() and seekp() allow you to move the position

Moving Around in a File

 Can use absolute positioning or relative positioning

 seekg(position) is absolute – it will go to that position

 seekg(offest, direction) is relative – it will move “offset”
number of positions past “direction”

 direction can be:

Example

Binary Files

 We use the >> and << operators to write to text files

 This is not efficient for binary files

 Use read and write instead

Buffers and Synchronization

 When we work with files, they are associated with an
internal buffer of type streambuf
 This is so that we don’t write to disk for every single piece of

data

 When the buffer is flushed, that is when the data is
actually written to disk
 Called synchronization

 Happens when:

 File is closed by the program

 When the buffer is full

 Explicitly (you can force a buffer flush with the flush() command)

 Explicitly with sync()

Summary

 C++ Classes

 Friendship

 Inheritance

 Multiple Inheritance

 Polymorphism

 Virtual Members

 Abstract Base Classes

 File Input/Output

