
1

CSCI 136 Programming Exam #0
Fundamentals of Computer Science II
Spring 2015

This part of the exam is like a mini-programming assignment. You will create a program, compile it, and
debug it as necessary. This part of the exam is open book and open web. You may use code from the course
web site or from your past assignments. When you are done, submit all your Java source files to the
Moodle exam #0 dropbox. Please double check you have submitted all the required files.

You will have 100 minutes. No communication with any non-staff members is allowed. This includes all
forms of real-world and electronic communication.

Grading. Your program will be graded on correctness and to a lesser degree on clarity (including comments)
and efficiency. Partial credit is possible, so strive to provide a solution that demonstrates you know how to
do as many parts of the problem as possible (even if there are bugs tripping up the total solution).

2

Overview. You are searching for a shipwreck with the help of one or more sets of sonar data recorded by a

surface ship. You are to develop the classes need to store and query this collection of data. To get started,

download the zip file containing stub classes as well as a variety of test data files:

http://katie.mtech.edu/classes/csci136/sonar.zip

Part 1: SonarData. This class loads a grid of sonar data from a text file. It keeps track of all the readings.

Clients can ask for the size of the grid or for a reading at a specific location. It can also generate a ASCII

representation of its data. Here is the API:

public class SonarData

 SonarData(String filename) throws FileNotFoundException
 int getWidth()
 int getHeight()
double getReading(int x, int y)
String toString()

See the provided stub code in SonarData.java for details about what each method does. The constructor

of SonarData loads data from a text file, for example here is data-tiny1.txt:

10 5
-1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 0.0 0.2 0.0 0.6 0.4 -1.0 -1.0
-1.0 0.0 0.0 0.1 0.0 0.0 0.5 1.0 0.1 -1.0
 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.9 0.0 -1.0
 0.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0

This file represents a very low resolution scan of Lake Superior. It has 10 readings in the x-dimension

(width) and 5 in the y-dimension (height). The width and height are specified by the first two integers in the

file. This is followed by the readings at each location, starting with (x=0, y =0), (x=1, y=0), etc. A reading

with the value -1.0 indicates land. Positive values are the strength of the sonar return.

The toString method in SonarData visualizes the data using ASCII text. The above file look like this:

XXXX...XXX

XXX.+.@+XX

X..+..+@+X

.+.....@.X

...XX.....

Here are the rules for how readings appear:

X readings below 0.0.

. readings greater than or equal to 0.0 and strictly less than 0.1

+ readings greater than or equal to 0.1 and strictly less than 0.6

@ readings greater than or equal to 0.6

The methods getWidth and getHeight return the size of the loaded data. getReading returns the reading

at the specified (x, y) location. You can assume the caller to getReading has specified a valid location.

http://katie.mtech.edu/classes/csci136/sonar.zip

3

Part 2: SonarDataCollection. This class holds a collection of sonar data sets. Here is the API:

public class SonarDataCollection

 SonarDataCollection(String filename) throws FileNotFoundException
 int getWidth()
 int getHeight()
 int getSize()
double getMinReading(int x, int y)

See the provided stub code in SonarDataCollection.java for details about what each method does. The

constructor of SonarDataCollection loads its data sets from a series of files specified in the filename

given to the constructor. For example, here is the file set-tiny2.txt:

data-tiny1.txt
data-tiny2.txt

This file specifies the collection should load two SonarData objects from the files data-tiny1.txt and

data-tiny2.txt. As the constructor loads the data sets, it also prints out an ASCII representation of each

set. For example if given set-tiny2.txt, the constructor would print:

XXXX...XXX

XXX.+.@+XX

X..+..+@+X

.+.....@.X

...XX.....

XXXX...XXX

XXX.+.++XX

X+....+@.X

.+.....@+X

...XX...+.

If the file containing the list of data files is not found, or if any of the data files is not found, the constructor

throws a FileNotFoundException. If loading multiple data sets, any set with a size different from the first

data set is not added to the collection and the error message shown below is printed. However,

subsequent data sets should still be loaded. Here is the output of the constructor for the file set-tiny-

mismatch.txt:

XXXX...XXX

XXX.+.@+XX

X..+..+@+X

.+.....@.X

...XX.....

Filename data-small1.txt has a different size, skipping!

XXXX...XXX

XXX.+.++XX

X+....+@.X

.+.....@+X

...XX...+.

4

The methods getWidth and getHeight return the size of the loaded data set(s). If no data sets were

loaded successfully, these methods return -1.

getSize returns the number of loaded data sets.

getMinReading returns the minimum reading in the loaded data sets at a specified (x, y) location. If any of

the data sets has land at the specified location, it returns -1.0. If no data sets are loaded, it returns

Double.POSITIVE_INFINITY. You can assume the caller to getMinReading has specified a valid location.

Part 3: Sonar. This is the main program that performs detection based on a set of sonar data sets. The

program takes two command line arguments, the first specifies the file containing the list of data set

filenames. The second is a floating-point threshold.

The program outputs the data visualization (as provided by the SonarDataCollection constructor). The

total number of files loaded successfully is then printed. This is followed by all (x, y) locations where the

reading is greater than or equal to the threshold value along with the minimum value at that location

(rounded to two decimal places). The locations are checked starting at (0, 0), preceding horizontally

checking (1, 0), (2, 0), and so on. After completely the top row, it checks (0, 1), (1, 1), (2, 1), and so on.

Finally the program outputs the total count of locations that met the threshold. Here is an example run:

% java Sonar set-tiny1.txt 0.5

XXXX...XXX

XXX.+.@+XX

X..+..+@+X

.+.....@.X

...XX.....

Loaded files: 1

(6, 1) = 0.60

(6, 2) = 0.50

(7, 2) = 1.00

(7, 3) = 0.90

Total hits: 4

If the filename provided to Sonar is not found, or any of the files contained in it are not found, Sonar prints

the following error message an the program exits:

% java Sonar bogus.txt 0.5

Failed to load data!

% java Sonar set-tiny-missing.txt 0.5

Failed to load data!

If the 2nd argument is not parseable as a floating-point, Sonar prints the following error message and exits:

% java Sonar set-tiny1.txt five

Threshold must be a floating-point value!

5

Here are some other example runs:

% java Sonar set-small2.txt 0.8

XX

XXXXXXXXXXXXXXXXXX.....XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX...........XXXXXXXXXXXX

XXXXXXXXXXXXXXXXX.@........++XXXXXXXXXXX

XXXXXXXXXXXXXX...++.........+XXXXXXXXXXX

XXXXXXXXXXXXXX...+......+....XXXXXXXXXXX

XXXXXXXXXXXXXX++.........+....XXXXXXXXXX

XXXXXXXXXXXXX..++.............XXXXXXXXXX

XXXXXXXXXXXX...+...................XXXXX

XXXXXXXXX...++........+............XXXXX

XXXXXXX..+..+..+.....+++...........XXXXX

XXXXXX...+....++......+.........@...XXXX

XXXXX.........@.+...........+.......XXXX

XXXX....+.+.......X........+@.......XXXX

XXX..............X..........++......XXXX

XX.+.+..@.......XX...........+.......XXX

X...........@.XXXX.X..................XX

X...XX......XXXXXXXXXX...............XXX

XXXXXX....XXXXXXXXXXXX.......XXXX....XXX

XXXXXXXXXXXXXXXXXXXXXXX....XXXXXXX...XXX

XX

XX

XXXXXXXXXXXXXXXXXX.....XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX....+......XXXXXXXXXXXX

XXXXXXXXXXXXXXXXX.@.......+..XXXXXXXXXXX

XXXXXXXXXXXXXX...++.........+XXXXXXXXXXX

XXXXXXXXXXXXXX...+......+....XXXXXXXXXXX

XXXXXXXXXXXXXX.+...+.....+....XXXXXXXXXX

XXXXXXXXXXXXX..++..++.........XXXXXXXXXX

XXXXXXXXXXXX...+...................XXXXX

XXXXXXXXX...++.....................XXXXX

XXXXXXX..+..+..+.....+@+........@..XXXXX

XXXXXX...+.....@......+.........@...XXXX

XXXXX...........+...........+.......XXXX

XXXX....+.+.......X.....+..+@.......XXXX

XXX..............X.....+@.......+@..XXXX

XX.+........+...XX..............+....XXX

X..........+@+XXXX.X..................XX

X...XX......XXXXXXXXXX......+........XXX

XXXXXX....XXXXXXXXXXXX......+XXXX....XXX

XXXXXXXXXXXXXXXXXXXXXXX....XXXXXXX...XXX

XX

Loaded files: 2

(32, 11) = 0.80

(28, 13) = 0.90

(12, 16) = 0.90

Total hits: 3

6

% java Sonar set-tiny-mismatch.txt 0.4

XXXX...XXX

XXX.+.@+XX

X..+..+@+X

.+.....@.X

...XX.....

Filename data-small1.txt has a different size, skipping!

XXXX...XXX

XXX.+.++XX

X+....+@.X

.+.....@+X

...XX...+.

Loaded files: 2

(6, 2) = 0.40

(7, 2) = 0.90

(7, 3) = 0.80

Total hits: 3

% java Sonar set-large.txt 0.5

...(output omitted)...

Loaded files: 2

(45, 11) = 0.50

(46, 11) = 0.60

(29, 12) = 0.70

(28, 13) = 0.70

(29, 13) = 0.70

(28, 14) = 0.80

(30, 14) = 0.50

(29, 15) = 0.50

(14, 23) = 0.70

(15, 23) = 0.60

(15, 24) = 0.90

(16, 24) = 0.60

(15, 25) = 1.00

(16, 25) = 0.80

(15, 26) = 0.90

(68, 31) = 0.50

Total hits: 16

