CSCI 136 Written Exam #0 Name:

Fundamentals of Computer Science Il
Spring 2012

This exam consists of 6 problems on the following 8 pages.
You may use your single-side hand-written 8 %2 x 11 note sheet during the exam. You may use a simple
handheld calculator. No computers, mobile devices, cell phones, or other communication devices of any

kind are permitted.

If you have a question, raise your hand and | will stop by. Since partial credit is possible, please write
legibly and show your work.

Problem Points Score
1 8

2 14

3 8

4

5 16

6 12

Total 66

1. Loops, Input (8 points). Consider the following program:

public class Probl

{
public static void main(String [] args)
{
int i = Integer.parseInt(args[0]);
while (i > 0)
{
System.out.print(i + ",");
i=1-2;
¥
System.out.println(i);
¥
}

Below are four example executions of the program. Give the output produced by the program. If the
given input would cause a runtime error, write "runtime error". If it would cause a compile error, write
"compiler error".

Command line Output

% java Probl 10

% java Probl 3 foo 3.14

% java Probl -10

% java Probl -10.0

2. ADTs and Data Structures (14 points).

a) For each problem on left, give the letter of the best abstract data type for solving that problem. Each

letter will be used exactly once.

Problem Best ADT
letter
Implement the Back button on a web browser. a) Stack
b) Queue
Given a unique username, look up the last login time for that user.) List
c) Lis
Given a passport number, determine if that number is in a known group of d) Map
terrorists (some agency has given you a list of passport numbers of terrorists). e) Set

Simulate the behavior of cars at a traffic light

An online movie site stores many details about each title it has available. Among
the details is a rating from 1 to 5 stars. The web interface needs to sort movies

according to their rating.

b) Your boss asks you to implement a queue ADT that stores doubles. Give an advantage and a

disadvantage for each of the following possible underlying data structures:

Data Advantage
structure

Disadvantage

Fixed
array

Doubling
array

Linked list

c) Your boss is troubled by your "complicated" class declaration:

public class MyQueue<E>

Explain to your boss the advantage of declaring your class in the above way rather than like this:

public class MyQueue

3. Performance (8 points). The following table gives running times measured for a program using an
input size of N, for various values of N.

N time (seconds)
1000 0.05
2000 0.17
4000 0.66
8000 2.65

16000 10.52

a) Which of the following best describes the order of growth of the running time of this program? Circle
one of the following:

[. O(1), constant
II. O(log N), logarithmic
[Il. O(N log N), linearithmic
IV. O(N), linear
V. O(N?), quadratic
VI. O(N?), cubic
VIl. 0(2"), exponential

b) Give the equation showing the running time of the program in seconds as a function of the input size
N (you need to find the leading constant).

c) Estimate the program's running time in seconds for an input size of N = 100,000.

4. Performance (8 points). For each code section in the left column, circle the letter in the right-column
that best describes the order of growth of the code. Circle one letter. You have no idea what goes on in
the mystery method. Do not worry about what is being calculated in the variable num or whether it

overflows/underflows.

for (int i = 0; i < N; i++)

{
for (int j = @0; j < N; j++)
{
for (int k = 9; k < 4200; k++)
{
num = num / 2 + 5;
++num;
}
}
H

a) 0(1)

b) O(N)

c) O(N?)

d) O(N’)

e) O(N) or worse (slower)
f) O(N?) or worse (slower)
g) O(N?) or worse (slower)

for (int i = 0; i < N; i++)

{
num = num + (i * N);
}
for (int 1 = 9; 1 < N * 10; i++)
{
num = num % ij;
}

a) 0(1)

b) O(N)

c) O(N?)

d) O(N3)

e) O(N) or worse (slower)
f) O(N?) or worse (slower)
g) O(N?) or worse (slower)

for (int i = @; i < (N / 100); i++) a) O(1)
{ b) O(N)
if (mystery(N, i) < @) c) O(N?)
num += i; d) O(N3)
else e) O(N) or worse (slower)
num -= N; f) O(N?) or worse (slower)
} g) O(N?) or worse (slower)
int i = N / 2;
int j = 0;
int k = 9;
while (i < N)
{ a) 0(1)
v{uhile (7 < N) b) O(N)
2
\j{while (k <= N) Z)) gzm%
num += Math.random(); e) O(N) or worse (slower)
K++; f) O(N?) or worse (slower)
} g) O(N?) or worse (slower)
J++s
)
i++;

5. Linked Structures (16 points). The class QueueOfInts implements a FIFO queue that holds primitive
int values. The underlying data structure is a null terminated linked list. Here is part of the class:

public class QueueOfInts

{
private Node first = null;
private class Node
{
private int item;
private Node next;
Node(int item, Node next)
{
this.item = item;
this.next = next;
}
}
public void enqueue(int val)
{
if (first == null)
{
first = new Node(val, null);
return;
}
Node current = first;
while (current.next != null)
current = current.next;
current.next = new Node(val, null);
}
/* more methods go here */
}

a) Draw a diagram representing the state of the linked list after each line of the following five line
program. Use the block and arrow notation shown in class with a null being a dot. Be sure to show
where the instance variable first is pointing and the value at each node in the list.

Line | Code Diagram

QueueOfInts q =
new QueueOfInts();

2 g.enqueue(2);

3 g.enqueue(4);

4 g.enqueue(3);

5 g.enqueue(-7);

5. Linked Structures (continued)

b) Place an X in the one box containing the QueueOfInts dequeue method that correctly implements a

First-In First-Out (FIFO) queue.

public int dequeue()

{
if (first == null)
throw new RuntimeException("Empty!");
int result = first.item;
first = first.next;
return result;
}

public int dequeue()
{
if (first == null)
throw new RuntimeException("Empty!");
Node current = first;
while (current.next.next != null)
current = current.next;
int result = current.next.item;
current.next = null;
return result;

public int dequeue()
{
if (first == null)
throw new RuntimeException("Empty!");
if (first.next == null)
{
int result = first.item;
first = null;
return result;
}
Node current = first;
while (current.next.next != null)
current = current.next;
int result = current.next.item;
current.next = null;
return result;

public int dequeue()
{
if (first == null)
throw new RuntimeException("Empty!");
first = first.next;
return first.item;

5. Linked Structures (continued).

The QueueOfInts class has the following insert method :

public void insert(int val)

{
if ((first == null) || (first.item > val))
{
first = new Node(val, first);
return;
}
Node current = first;
while ((current.next != null) && (current.next.item < val))
current = current.next;
current.next = new Node(val, current.next);
}

c) Draw a diagram representing the state of the linked list after each line of the following five line program.
Use the block and arrow notation shown in class with a nul1 being a dot. Be sure to show where the
instance variable first is pointing and the value at each node in the list.

Line | Code Diagram

QueueOfInts q =
new QueueOfInts();

2 g.insert(2);

3 g.insert(4);

4 g.insert(3);

5 g.insert(-7);

d) In 2* words or less, describe the goal of the insert method.

6. Arrays and Collections (12 points). For each of the following, give the code to declare the necessary
variable and give code that adds a single non-null entry into the collection. The first one has been done
for you. You can assume the Animal class has a default constructor that creates a random animal.

Description

Java variable declaration

Example of adding one non-null item

A fixed-sized
list that can
hold up to 100
integer values.

int [] d = new int[100];

(o
o
Il

42;

A dynamically-
sized list that
can hold any
number of
integer values.

A fixed-sized
list that can
hold up to 100
objects of type
Animal.

A map that can
track how
many times a
particular
Animal object
has been seen.

A set that can
decide if a
given word is
in a large list of
words. Words
are

represented by
String

objects.

