CSCl 136 Programming Exam #1
Fundamentals of Computer Science Il
Spring 2012

This part of the exam is like a mini-programming assignment. You will create a program, compile it, and
debug it as necessary. This part of the exam is open book and open web. You may use code from the course
web site or from your past assignments. When you are done, submit all your Java source files to the
Moodle exam #1 dropbox. Please double check you have submitted all the required files.

You will have 100 minutes. No communication with any non-staff members is allowed. This includes all
forms of real-world and electronic communication.

Grading. Your program will be graded on correctness and to a lesser degree on clarity (including comments)
and efficiency. You will lose a substantial number of points if your code does not compile or crashes on
typical inputs.

Overview. You will be implementing a class that simulates paint dripping down a two-dimensional colored
grid. The 2D grid has an initial configuration of colored grid boxes. These fixed initial boxes will deflect paint
that drips down on them. Here is what an initial grid looks like that has a width of 8 and a height of 8 with
initial a red box at (0, 0), a blue box at (7, 7), and green boxes at (4, 2) and (4, 4):

| 2 Standard Draw =l ==

File

You will be completing the instance methods in the class Grid. The class already has some instance

variables declared. The draw () method is also completely implemented, you should not need to modify
draw () . Note that our draw() method assumes uncolored grid locations contain the value null.

As usual (0, 0) will be the lower-left corner. Start by downloading the file located at:

http://katie.mtech.edu/classes/cscil36/grid.zip

The exam is split into three parts, by the end you will have developed the following API:

public class Grid

Grid(int width, int height) // partl

Color getColor(int x, int y) // partl

void setColor(int x, int y, Color c) // partl

int getWidth() // partl

int getHeight() // partl

int getMaxColumn() // partl

Grid(String filename) // part2

void drip(int x, int y, Color c) // part3
void draw() // implemented for you

Part 1. In this part, you will be implementing the methods needed to create an empty grid, set the color at
a given location, get the grid width, get the grid height, get the color at a given location, and calculate
which column has the most colored grid locations.

The exact behavior of each method is described in the comments before the method declaration in the
provided stub code. We have given you various chunks of test code for each part of the exam in the
main () method of Grid.java. We will not be grading your main () method.

The part 1 test code should produce the above grid graphic and the following console output:

Grid size = 8 x 8

Color @ (9,0)
Color @ (1,1)

java.awt.Color[r=255,g=0,b=0]
null

Max column = 4

Part 2. Add the ability to load the initial grid configuration from a text file. Create an overloaded version of

the Grid constructor that takes a single parameter that specifies the filename. Here is the example
gridl.txt file:

16 14

1 3 1.
12 1.

10 10
11 11
12 10

4

5
6
2

W o O O

0

0
0
0

0 0.0 0.0

0 0.0 0.0

010

010

010

01

01

01

.6274 0.1254 0.9411

The first two numbers give the width (16) and the height (14) of the grid. You can assume any file given to

your constructor has two positive integers representing the width and height. After the width and height, 0
or more colored grid locations are specified. Each colored grid location is specified by two integers followed
by three floating-point values. For example, the second line in the above specifies a block at x-location 1, y-
location 3, with a red color (the RGB value is 1.0, 0.0, 0.0). You can assume all grid locations and RGB colors
in the file are valid.

Creating a Grid object with the file gridl. txt and then calling draw () should result in the following:

%] Standard Draw o ®[=
File

Part 3. A drop of paint is started at a specified (x, y) position in the grid. The drop proceeds down the grid
coloring empty grid locations as it goes. So for example, initializing the grid with grid1l.txt, if adrip is
started at (8, 5) with a color of orange, it would color orange the grid locations (8,5) (8,4) (8,3) (8,2) (8,1)

and (8,0):

|) Standard Draw [E=3 N)|

File

3a

However, if while proceeding down the screen, the grid location directly below a drip’s current location is
already colored, the drop splits into two parts. The first part attempts to continue down and to the left of
the current drip’s location. The second part attempts to continue down and to the right of the current
drip’s location. So for example, loading gridl . txt and creating an orange drip at (1, 6) results in:

| £/ Standard Draw oo =

File

3b

During its journey down the grid, a drop may get split several times. For example, a drip started at (2, 10) splits once
when it hits the purple block at (2,8) and again when it hits the red block at (1,3):

) Standard Draw el

File

3c

It is possible when the drip splits, one or both sides will be unable to proceed due to an existing colored
grid location(s). For example, in the grid shown below, a drip started at (6,8) split when it hit the blue
horizontal surface at (6, 6). But only the right part of the split was able to continue at (7, 6). The left part
was unable to continue since (5, 6) was already colored blue:

|£) Standard Draw =) &=

File

3d

Implement a recursive method to color the grid according to the previous outlined rules. The method’s
signature is:

public void drip(int x, int y, Color c)

The recursive algorithm has two base cases:
* The (x, y) location is out of range with respect to the grid.
* The (x, y) location is already colored. This includes being colored by the initial configuration file or
by having been colored by a previous drip.

The recursive step should proceed straight down or split if the grid immediately below the current location
is already colored. Here is the output from the final test code provided in our main () method consisting of
6 calls to drip (). Note only 5 drips appear since the last one was created on top of a previous drip:

|2 Standard Draw o@|=
File

Console output:
Max column = 11

