CSCI 136 Programming Exam #0
Fundamentals of Computer Science Il
Spring 2012

This part of the exam is like a mini-programming assignment. You will create a program, compile it, and
debug it as necessary. This part of the exam is open book and open web. You may use code from the course
web site or from your past assignments. When you are done, submit all your Java source files to the
Moodle exam #0 dropbox. Please double check you have submitted all the required files.

You will have 100 minutes. No communication with any non-staff members is allowed. This includes all
forms of real-world and electronic communication.

Grading. Your program will be graded on correctness and to a lesser degree on clarity (including comments)
and efficiency. You will lose a substantial number of points if your code does not compile or crashes on
typical inputs.



Overview. You will be developing classes for use in a dice-related game. You will be developing three
classes, Die.java, Dice.java,and LoadDice.java. You should probably develop the classes in this
order. Stub versions of these classes as well as two test files fixed. txt and random. txt can be
downloaded from here:

http://katie.mtech.edu/classes/cscil36/dice.zip

Die class. Your first task is to develop a class that represent a single die. The most familiar type of die is 6-
sided and can take a value of 1, 2, 3, 4, 5, or 6. As players of Dungeons and Dragons know, there are other
types of dice such as 4-sided, 8-sided, 12-sided and 20-sided.

You class will support dice with between 1 and 100 sides inclusive. A 1-sided die is a ball that always has a
value of 1, a 100-sided die has 100 faces and can take any value between 1 and 100. In your
implementation, any attempt to create a Die object with fewer than 1 side or more than 100 should result

in a runtime exception.

A die can be rolled to get a random value in its range. Alternatively a die can also be set to a specific value.
The specific value must be within the allowed range of that die. Any attempt to set a die to an invalid value
causes the die to be set to a random value (i.e. it is like someone rolled the die instead).

Here is the public API to the Die class:

public class Die

Die (int sides) // Create die with given number of sides
Die (int sides, int value) // Create die with given # of sides and initial wvalue
void roll () // Roll the die setting a new random value
void setValue (int value) // Set the die to the given value, set to a random
// value if the value is out of range
int getVvalue () // Get the current value of the die
int getSides () // Get how many sides the die has
String toString/() // Return string representation, format example:

// "3(6d)" is a 6-sided die with current value 3

You may want to create a main method for testing purposes, but it is not required and will not be graded.



Dice class. The Dice class represents a collection of 0 or more Die objects. This class can do the following:
add a new die to the collection, roll all the dice, return a string representation of the dice, and calculate
various quantities about the dice. For example, assume our collection has three 6-sided dice with values 1,
3, 4 and two 10-sided dice with values 3 and 9. The string representation would be "1(6d) 3(6d) 4(6d)
3(10d) 9(10d)". The calculated quantities are:

* sum - The sum of the values of all dice in the collection,1+3+4+3+9=20

* max - The largest value of any dice in the collection, max(1, 3,4, 3,9)=9

* same - The maximum number of dice that have the same value. So for the above example with dice
having values 1, 3, 4, 3, 9 the "same" value is 2 since there are 2 dice with the same value (a value of
3). If we had a collection of dice with values 1,9, 8,9, 9, 8, 3, the "same" value would be 3 since
there are 3 dice with the same value (a value of 9).

Here is the public API to the Die class:

public class Dice

void add(int sides) // Add die with the given sides and a random value
void add(int sides, int value) // Add die with the given sides and given value
void roll() // Roll all the dice
int sum() // Compute the sum of all the dice values
int max () // Compute max value over all the dice
int same () // Compute max number of dice having the same value
String toString/() // Return a string representation of all the dice

// Format example: "3(4d) 5(6d) 12(20d)"
You may want to create a main method for testing purposes, but it is not required and will not be graded.

LoadDice program. This program has a main method that reads in data from a text file using Java file 1/0

(NOT standard input). The filename is given as the first command line argument. If no arguments are given,
the error "No filename!" is printed and the program exits. If the file can't be read, "File read error!" is
printed and the program exits. Here are two example files:

georgia 4 4 sammy 6 0
sammy 6 3 Georgia 4 0
georgia 6 2 ross 20 0
ROSS 20 15 pedro 4 0
pedro 4 2 georgia 4 0
georgia 10 8 Georgia 4 0
georgia 10 8 sammy 1 0
sammy 1 1 sammy 50 O
Sammy 50 50 Ross 8 0
ross 8 7 georgia 4 0
georgia 12 8 georgia 4 0
sammy 100 50 georgia 4 0

fixed.txt random. txt

Each line in the file contains three columns separated by whitespace. The first column is the name of a
player. Names of players are case insensitive (i.e. sammy and Sammy are the same player). The second

column is the number of sides of the die. The third column is the current value of the die (an invalid value
means that die should be given a random value). The program should read in all the data from the file and
3



produce for each player: their name (in lowercase), a summary of the dice held, the player's sum, max and
same values. Example runs:

% java LoadDice fixed.txt

pedro

2 (4d)

sum = 2

max = 2

same = 1

ross

15(20d) 7(8d)

sum = 22

max = 15

same = 1

sammy

3(ed) 1(1d) 50(50d) 50(1004d)
sum = 104

max = 50

same = 2

georgia

4 (4d) 2(6d) 8(10d) 8(10d) 8(12d)
sum = 30

max = 8

same = 3

% java LoadDice random.txt

pedro

4 (4d)

sum = 4

max = 4

same = 1

ross The values in this example are
20(20d) 4(8d) random! You are unlikely to
sum = 24

max = 20 get the same output.
same = 1

sammy

6(6d) 1(1d) 12(50d)

sum = 19

max = 12

same = 1

georgia

3(4d) 2(4d) 1(4d) 1(4d) 4(4d) 1(44d)

sum = 12

max = 4

same = 3

% java LoadDice blahblah. txt
File read error!

% java LoadDice
No filename!



