
http://www.flickr.com/photos/mac-ash/4534203626/

http://www.flickr.com/photos/thowi/182298390/

http://www.flickr.com/photos/mac-ash/4534203626/
http://www.flickr.com/photos/mac-ash/4534203626/
http://www.flickr.com/photos/mac-ash/4534203626/
http://www.flickr.com/photos/thowi/182298390/

 Terminology
◦ Abstract Data Types (ADT)

◦ Data structures

 Stack ADT
◦ Last-in first-out (LIFO)

 Queue ADT
◦ First-in first-out (FIFO)

2

 Abstract Data Type (ADT)
◦ A collection of data and a set of operations on that

data

◦ Why is it "abstract"?

 Doesn't specify implementation details

 Just describes what the type can do

 You can use without knowing internal workings

◦ e.g. Stack, Queue, SymbolTable, List, SortedList

 Data structure
◦ How the data type is implemented in software

◦ e.g. array, linked list, linked graph

3

 Collection: A common data type for storing data
◦ Allow users to insert item

◦ Allow users to remove item, but which one?

◦ Allow users to see if the collection is empty

 List
◦ Remove at specified position

◦ e.g. pile of resumes in order of GPA, Java's ArrayList class

 Stack
◦ Remove the most recently added = LIFO (Last-In First-Out)

◦ e.g. trays in the cafeteria

 Queue
◦ Remove the least recently added = FIFO (First-In First-Out)

◦ e.g. line at the grocery store

 Symbol Table
◦ Remove item with a given key

◦ e.g. phone book: maps a name to a phone number

4

5

Remove
most

recently
added

push(Meat) push(Veggie) push(Cheese) pop()
== Cheese

isEmpty()
== true

LIFO = last-
in first-out

6

Remove
most

recently
added

push(Veggie) pop()
== Veggie

LIFO = last-
in first-out

pop()
== Veggie

pop()
== Meat

isEmpty()
== true

7

public class StackOfStrings

 StackOfStrings() // Construct a new stack
 void push(String s) // Add a new string to the queue
 String pop() // Remove the most recently added string
 boolean isEmpty() // Check if the queue is empty

the

quick

the

quick quick

the the

brown

push pop pop

 Goal: Reverse all the words in a file
◦ "glory is fleeting but obscurity is forever" →

◦ "forever is obscurity but fleeting is glory"

 Approach:

◦ Use a Stack ADT as implemented by StackOfStrings

◦ While more text available from standard input:

 Read a word, push on stack

◦ While stack is not empty:

 Pop from stack, output word

8

9

public class ReverseWords
{

 public static void main(String [] args)
 {
 StackOfStrings stack = new StackOfStrings();

 while (!StdIn.isEmpty())
 stack.push(StdIn.readString());

 while (!stack.isEmpty())
 System.out.print(stack.pop() + " ");

 System.out.println();
 }

}

Create an instance of a stack ADT.
Notice we don't specify a size, the
class promises to handle any size.

Start peeling off words starting with the
last one pushed on top of the stack.

Next word goes on top of the stack
that contains all the previously read
in words.

 Goal: Check for balanced ()'s and []'s
 [((a + b) * d) + (e * f)]
 [([a + b] * d) + (e * f)]
 [((a + b) * d) + (e * f)
 (a + b) * d) + (e * f)
 [((a + b) * d) + (e * f))

10

→ balanced

→ balanced

→ unbalanced

→ unbalanced

→ unbalanced

 "I will, in fact, claim that the difference
between a bad programmer and a good one is
whether he considers his code or his data
structures more important. Bad programmers
worry about the code. Good programmers
worry about data structures and their
relationships."
 -Linus Torvalds, creator of Linux

 Goal: Check for balanced ()'s and []'s
 [((a + b) * d) + (e * f)]
 [([a + b] * d) + (e * f)]
 [((a + b) * d) + (e * f)
 (a + b) * d) + (e * f)
 [((a + b) * d) + (e * f))

 Approach:
◦ Use a Stack ADT as implemented by StackOfStrings
◦ If token is (or [then push onto stack
◦ If token is) then pop stack and make sure popped

value is (
◦ If token is] then pop stack and make sure popped

value is [
◦ Any other token, ignore

11

→ balanced

→ balanced

→ unbalanced

→ unbalanced

→ unbalanced

 [([a + b] * d) + (e * f)]

12

push("[")

[

push("(")

[

(

push("[")

[

(

[

pop()

[

(

push("(")

[

(

pop()

[

pop() pop()

[

 [([a + b] * d) + (e * f]]

13

push("[")

[

push("(")

[

(

push("[")

[

(

[

pop()

[

(

push("(")

[

(

pop()

[

pop()

[

Popped value
was (but we
expected [,

not
balanced!

 [([a + b] * d) + (e * f)]]

14

push("[")

[

push("(")

[

(

push("[")

[

(

[

pop()

[

(

push("(")

[

(

pop()

[

pop() pop()

[

pop()

Trying to
pop empty
stack, not
balanced!

 [([a + b] * d) + (e * f)

15

push("[")

[

push("(")

[

(

push("[")

[

(

[

pop()

[

(

push("(")

[

(

pop()

[

pop()

[

Stack is not
empty at end,
not balanced!

public static void main(String [] args)
{
 StackOfStrings stack = new StackOfStrings();

 while (!StdIn.isEmpty())
 {
 String token = StdIn.readString();
 if ((token.equals("(")) || (token.equals("[")))
 {
 stack.push(token);
 }
 else if (token.equals(")"))
 {
 if ((stack.isEmpty()) || (!stack.pop().equals("(")))
 {
 System.out.println("Not balanced");
 return;
 }
 }
 else if (token.compareTo("]") == 0)
 {
 if ((stack.isEmpty()) || (!stack.pop().equals("[")))
 {
 System.out.println("Not balanced");
 return;
 }
 }
 }

 if (stack.isEmpty())
 System.out.println("Balanced");
 else
 System.out.println("Not balanced");
}

Balanced.java 16

17

isEmpty() == true

enqueue(Abe)

enqueue(Bill)

enqueue(Carol)

dequeue() == Abe

enqueue(Diana)

Remove
least

recently
added

FIFO =
first-in

first-out

18

public class QueueOfStrings

 QueueOfStrings() // Construct a new queue
 void enqueue(String s) // Add a new string to the queue
 String dequeue() // Remove the least recently added string
 boolean isEmpty() // Check if the queue is empty

the

quick

the

quick

brown

quick

brown brown

enqueue dequeue dequeue

 Goal: Parental spelling obfuscation aid
◦ "After the kids go to sleep let's have some…"
◦ Parent types "cookies" into computer
◦ Computer spells out each letter, "c--o--o--k--i--e-

-s"
 Pausing one second between letters

 Approach:
◦ Use a Queue ADT as implemented by
QueueOfStrings

◦ Queue a each new letter as it is typed
◦ Delay 1s before dequeue'ing

 Display letter

 Play WAV audio file

19

20

public static void main(String[] args)
{
 StdDraw.setFont(new Font("SansSerif", Font.BOLD, 120));
 int delay = 0;
 QueueOfStrings queue = new QueueOfStrings();

 while (true)
 {
 if (StdDraw.hasNextKeyTyped())
 {
 char key = StdDraw.nextKeyTyped();
 if ((key >= 'a') && (key <= 'z'))
 queue.enqueue("" + key);
 }
 StdDraw.show(100);
 delay += 100;

 if (delay >= 1000)
 {
 delay = 0;
 StdDraw.clear();
 if (!queue.isEmpty())
 {
 String letter = queue.dequeue();
 StdDraw.text(.5, .5, letter);
 StdAudio.play(letter + ".wav");
 }
 }
 }
}

Speller.java

Create an instance of a Queue data
type. Notice we don't specify a size,
class promises to handle any size.

Latest character goes at the back of
the line. All other character have to
play first.

Play the character that has been
waiting the longest in the queue.

 Abstract Data Types (ADTs)
◦ A collection of data and operations on that data

◦ LIFO Stack

 Push and pop items, always pops the last thing pushed

 Examples: reversing words in a sentence, check for balanced
parameters

◦ FIFO Queue

 Enqueue and dequeue items

 Always dequeue the thing that has been waiting the longest

 Examples: tracking and eventually servicing asynchronous
events (keys typed by parent)

 Data structures
◦ Implementation of an ADT (there may be many ways!)

◦ e.g. using a normal array, using an ArrayList, ...

 21

