
 1

The Darwin Game 2.2
Player’s Handbook

In The Darwin Game, creatures
compete to control maps and
race through mazes. You play
by programming your own
species of creature in Java,
which then acts autonomously
during competition. Creatures
can move, sense their
surroundings, and attack. A
successful attack replaces its
target with a new instance of the attacker, allowing creatures to reproduce. The
world is rendered in isometric 3D and players can create their own creature icons.
To dive right in, make a copy of Rover.java and start modifying it:

 cp Rover.java MyGuy.java
 …
 run -3D ns_faceoff MyGuy Rover

1 / The World of Darwin
Darwin creatures exist in a grid-based world specified by a rectangular map.
Different maps are available. A map square may be empty, occupied by a
creature, or by an obstruction. Here are some of the common map elements:

Creatures and map squares may also have modifiers, such as being enchanted or
filled with mud.

Object Observation Image Description
Wall type == Type.WALL

Impassable square. Attempting to move
onto this square halts but does not harm a
Creature.

Apple type == Type.CREATURE

classId ==
 APPLE_CLASS_ID

Motionless, passive Creature just waiting
for you to attack it.

Hazard type == Type.HAZARD

Impassable square. Attempting to move
onto this square converts a Creature to an
Apple as if it were attacked.

Flytrap type == Type.CREATURE

classId ==
 FLYTRAP_CLASS_ID

A dangerous creature rooted in place.
Continuously spins to the left and blindly
attacks.

Treasure type == Type.CREATURE

classId ==
 TREASURE_CLASS_ID

Attack this to complete a Maze map.

Enchanted
Apple

type == Type.CREATURE

isEnchanted == true

When attacked, the Creature that spawns
is also enchanted.

Shrine shrineClassId !=
 UNINITIALIZED_CLASS_ID

An enchanted Creature ascends at its
own species’ shrine

Shrine type == Type.EMPTY

shrineClassId !=
 UNINITIALIZED_CLASS_ID

An enchanted Creature ascends when it
steps on its own species’ shrine.

Morgan McGuire, 2008-2012 http://cs.williams.edu/~morgan/darwin/
Williams College Computer Science Department DARWIN 2.2

Thanks to Aaron Size, Chris Warren, and Josh Szmajda for play testing. “Darwin’s World” was created by Nick Parlante as
concurrent assembly interpreter programming assignment in Pascal in 1992. Eric Roberts ported it to C in 1999 and Steve Freund
adapted it to Java around 2000. I designed and implemented a new game based on these ideas in 2007 as the “Darwin 2.0” AI
and concurrency game. “Darwin 2.1” uses a coroutine model that eliminates the need for synchronization to emphasize the AI
aspects while maintaining the strategic value of efficient algorithms. “Darwin 2.2” increases complexity to admit multiple viable
strategies and encourage more interesting pathfinding and metagaming.

The Darwin Game 2.2 Player’s Handbook / _ 2

2 / Installing Darwin
You can play the Darwin Game on any operating system. If you are playing the
Darwin Game in a course, your instructor has probably given you a Java
development environment and installed Darwin. If you are not in a course, or just
want to work on your Creature at home, follow the instructions in this section.

Get Java
If you are on OS X, Linux, or FreeBSD then Java is probably already installed on
your computer. If you are on Windows then you probably need the free Java
JDK. The JDK for all platforms is available from:

http://www.oracle.com/technetwork/java/javase/downloads/jdk-7u1-download-513651.html

Get Darwin
Download the free, open source Darwin game system from:

http://cs.williams.edu/~morgan/darwin/

Unzip it and visit the directory from the command line (e.g., OS X terminal,
Windows CMD). Type “run” and press enter to verify that Darwin is working.

3 / Your First Creature
Make a copy of Rover.java with a new name, like MyGuy.java. Open the file in
a text editor, like Emacs, Notepad, Xcode, or Visual Studio. Rename the class to
match the file and save it.

Now run your new creature inside the Darwin simulator by typing:

run -3D mz_1 MyGuy

Darwin will prompt you to compile your creature automatically. Press the
play button (or one of the fast play buttons) to run the game. You can modify
your creature’s behavior by editing its .java file and then pressing the reload
button inside the simulator.

You can also explicitly compile all .java files in your Darwin directory at
the command line with:

 compile

or to just compile one creature,

 compile MyCreatureName.java

This shell script will issue the appropriate commands for your operating system.
See README.TXT for detailed instructions on how to launch the Darwin game.
Note that on Linux you may need to use a variation on these and remove the –
Xdock argument.

The Darwin Game 2.2 Player’s Handbook / _ 3

4 / Game End

Maze
Maze map filenames are prefixed with “mz_”. They contain only one kind of
creature and one Treasure. The goal on these maps is to find and attack the
treasure before the time limit expires. The time limit is about 8 [virtual] seconds.

Natural Selection
Natural Selection maps are prefixed with “ns_”. They contain multiple kinds of
creatures and no Treasure. The goal on these maps is to perform five ascensions
or to become one of the most populous species. They have a time limit of about
50 (virtual) seconds.

There are standard tournament mazes that have further restrictions, and
nonstandard ones that are useful for testing (or simply experimenting with for
entertainment.)

See the Tournament section of this handbook for details of scoring Natural

Selection draws and repeated trials.

The Darwin Game 2.2 Player’s Handbook / _ 4

5 / Creature Actions
In addition to Java commands for programming logic, creatures can perform
actions within the world by invoking special methods on itself. Each action has a
time cost in nanoseconds, creating tension between the time spent deciding which
action to take and the time to perform that action. Using data structures
effectively to reduce decision time is therefore essential. Available actions are:

Action Cost Description
Move Backward 700000 ns Move backward one square. If the square is blocked,

the move fails but still costs time.
Move Forward 400000 Move forward one square in the current facing direction.

If that square is blocked, the move fails but still costs
time.

Attack 800000 Attack the creature immediately in front of this one. If
there is no creature of a different species present, then
the attack fails but still costs time*. If the attack
succeeds the target is replaced with new instance of
this creature facing in the opposite direction.
* An enchanted creature attacking another member of
its own species passes the enchantment to the target.

Observe 200000 Return a description of the squares along the facing
direction up to and including the first non-empty square.

Turn Left 600000 Rotate 90-degrees counter-clockwise.

Turn Right 600000 Rotate 90-degrees clockwise.

Delay 100000 Pass this turn. The same creature may receive its next
turn immediately.

Emit Pheromone 200000 Leave a mark on the map (experimental)

Mud Penalty +500000 Moving, turning, or attacking from a square containing
mud costs more

Ascend 0 An enchanted creature moving onto its own class’
Shrine ascends immediately and is replaced by a non-
enchanted creature.

All creatures in the world take turns. When a creature performs an action, the
effect occurs immediately and then the creature’s turn ends (except that the result
of an observe action is valid as of the beginning of the next turn). The run
method need not return—on the creature’s next turn, its program will continue
execution immediately after the previous action’s invocation. A nonresponsive
creature that takes no action for ½ second has “stopped breathing” and is
converted into an Apple.

The simulator tracks the total time that each creature has spent on its
previous turns. The creature that has spent the least amount of accumulated time
takes the next turn. When a new creature spawns as a result of a successful
attack, it inherits the total time of the creature that created it.

Note that only one creature is active at a time. There is no need to
synchronize access to data structures, and a creature that makes decisions within
a reasonable amount of time can assume that its code executes without
interruption until it takes an action.

Creatures are only allowed to invoke the action methods on themselves.
They may not invoke action methods on other members of their species for
which they have obtained pointers. The simulator enforces this and other rules
intended to promote fairness. In general, any code that the simulator permits is
legal; see the Tournament rules for exceptions.

The Darwin Game 2.2 Player’s Handbook / _ 5

6 / The Darwin GUI
The Darwin class runs the Simulator within a GUI. Its command line arguments
are the name of the map and the Creature classes with which to populate it. To
launch it, use the run shell script. For example,

 run ns_faceoff Rover Pirate

launches the simulator on the “Faceoff!” map with Rovers competing against
Pirates.

The GUI always begins paused. Press one of the three speed buttons to begin
simulation. The speed of simulation can be changed (or paused again) during
play. The map view can be switched from 2D (good for debugging) to 3D (good
for watching matches) using the gray square and cube icons.

In 2D view mode, click on any Creature to view it in the Darwin Inspector. This
shows information about the Creature that updates in real time, including the
current value of its toString method. Override Creature.toString and use the
debugger to inspect the internal state as it moves through the map.

The Reload button not only restarts the simulation, it also reloads your

Creature files from the .class files. This means that if you change your Creature
and recompile it, you do not need to restart the simulator. Just press Reload, as if
in a web browser, and you’ll get the newest version. Darwin will even prompt
and recompile your .java source file if the class is out of date!

Darwin security prohibits Creatures from accessing the file system, the reflection
API, and other Java features that could allow them to gain unfair information or
interfere with the normal operation of the simulation and other creatures. The
GUI (and Simulator, if you are running it directly from your own framework)
allow security to be disabled. For the GUI, you can do this with the –nosecurity
command line argument. This is sometimes useful when debugging your
creature, and is very useful if you’d like to “train” your creature using data
files. To run in competition you will have to embed the contents of your data files
in your class, however. For example, as a private static String.

Pause Slow Fast Faster

2D 3D

Reload

Inspector

Population Graph

The Darwin Game 2.2 Player’s Handbook / _ 6

7 / The Creature API
Creatures all subclass Creature, which provides a set of protected and public
methods that enable the Creature to interact with the world. Creatures must either
provide a public constructor of no arguments or have no constructor. The
constructor cannot make the creature take an action.

A Creature’s run method executes when it is inserted into the world. When
the run method ends the creature can take no further actions (it remains in the
world, however). Therefore most Creatures have an intentionally infinite loop in
their run method to allow them to continue taking actions.

If a Creature is successfully converted to another species, then it is removed
from the world but continues executing. The isAlive() method for a converted
creature returns false. If a creature that has been converted attempts to take an
action, then a ConvertedError is thrown. Most Creatures catch this error and then
allow their run method to terminate.

See http://cs.williams.edu/~morgan/darwin/ for the full Creature API.

Below is a sample of the code for a very simple Creature called a Rover. It
moves until obstructed and then attacks the obstruction and turns to the left. It is
surprisingly effective, but is unable to deal with hazards because it never looks
before moving. The gray code is boilerplate common to every Creature. The bold
black code in the center is the logic unique to the Rover.

public class Rover extends Creature {
 public void run() {
 while (true) {
 if (! moveForward()) {
 attack();
 turnLeft();
 }
 }
 }
}

Creature positions are specified using java.awt.Point, which you will need to
import at the top of your class to perform any useful operations on positions.
Note the helper methods on Creature and Direction that operate on Points and
Observations.

The API uses Java enum types to specify Directions and creature Types.
Enum types can generally be treated as constants, however they also provide
useful utility methods. The following (nonsense) code demonstrates uses of the
Direction enum.

Direction d = Direction.NORTH;

if (d == Direction.SOUTH) { … }

d = d.left();

Point p = new Point(3, 4);

p = Direction.forward(p);

switch (d) {
 case NORTH:
 ...
 break;
 case EAST:
 ...
}

The Darwin Game 2.2 Player’s Handbook / _ 7

8 / Tournament Rules
A creature for a tournament must be submitted in a zip file whose name is the
name of the creature followed by the author’s initials in all caps, e.g.,
WolfMM.zip. Inside the zipfile must be a single .java source file whose name
matches that of the zipfile (e.g., WolfMM.java), and the four icons described
previously with compatible names (e.g., WolfMM-E.png, etc.)

Standard Maze Tournaments have exactly two creature instances: one
treasure and one competitor. Standard Natural Selection tournaments have four
competitors (each starting with the same number of instances) and enchanted
Apples. They may also contain FlyTraps and non-enchanted Apples. Unofficial
Natural Selection tournaments may have arbitrary configurations, such as 1-on-1
(which was the format until 2012).

Intentionally creating a denial of service condition is grounds for, but may
not result in, disqualification. A normal infinite loop is not a denial of service,
since creatures are run on their own threads. Note that the simulator is hardened
to prevent accidental stack overflow or allocating all heap memory.

Creatures in a tournament are permitted to attack the JVM and running
simulator to attempt to gain access to restricted information or corrupt the
simulation state to their advantage. However, violating the following is grounds
for both disqualification and penal action: Creatures in a tournament are not
permitted to modify or attack the file system (e.g., create, modify or delete files),
the host machine’s configuration, user account, network, etc. Creatures may
attempt to open network connections, provided that they are not used to attack a
system.

Tournament Scoring
Maze tournaments creatures are ranked by their average times for running the
same maze six times. The lowest time wins.

Natural Selection tournaments run all O(n4) combinations of four species on the
same map. Based on how the game ends, each species receives the following
number of points:

Game Ending Condition / Point assignment
Ascension: (on three ascensions by one species)
 A 3 First species to complete three ascensions
 L 0 Any other species

Domination: (on elimination of ½ of the competitors)
 D 3 One of the remaining species
 L 0 Eliminated

Exhaustion: (at time limit)
 m 2 “Majority”: One of the two most-populous species (ties resolved down)
 s 1 “Survival”: At least one creature alive, but not among the most populous
 L 0 Eliminated

The winner of the tournament is the species with the highest total score. Note that
keeping a single instance of a creature alive can earn 30% of the total points.

The Darwin Game 2.2 Player’s Handbook / _ 8

Running the Tournament Software
The Darwin program launched with the “run” script allows you to test your
creature against the clock for maze maps or against another creature for natural
selection maps. It is very useful for debugging your creature, especially if you
use the slow-motion speed and the creature inspector. That is, Darwin is for
debugging the implementation of your strategy. To test the strategy itself, you
want to quickly run many trials with many creatures and see how yours ranks.
The best way to do this is to use the tournament software itself.

You can launch the tournament program with a command like:

java –cp .:darwin.jar –ea Tournament ns_faceoff Pirate Rover SuperRover Tortoise

On Windows, change the colon to a semi-colon. I recommend that you write a
little script similar to “run.bat” or “run” that launches the tournament with your
creature(s), the ones provided with the SDK, and the ones that your fellow
competitors have hopefully shared with you during the training period. That is, I
suggest that a good way to develop a creature is to share all of the .class, .png,
and .wav files for your creature (but maybe not the .java source), so that
everyone can enjoy exploring strategies together and try to explore
countermeasures. Note that you should test on lots of different maps (and make
some of your own). The tournament will always be run on a map that no-one has
seen before.

The SDK creatures provided for you are:

Maze Creatures
 Tortoise
 Skunk
 BamfJG
 PikuLR
 ElephantJL

NS Creatures
 Rover
 SuperRover
 Pirate
 SheepABS
 PsyduckATS

BrainNRKSLR
DalekKWDE

Many of these are inside the darwin.jar file, so you won’t see them in your
directory but you can run still against them by listing them on the command line.

The Darwin Game 2.2 Player’s Handbook / _ 9

Previous Tournament Winners

Year and League Player Creature Icon
2009 Pro NS
Faceoff Aaron Size SheepABS

2011F Williams Maze
Crossroads

Josh Geller BamfJG

2011F Williams NS
Tanhauser Gate

Greg White &
Ben Athiwaratkun

ProbeGAWPA

2011F Pro NS
Tanhauser Gate

April T. Shen PsyduckATS

2011S Williams Maze
QR

Lily Riopelle PikaLR

2011S Williams NS
Insurgency

Luc Robinson &
Nathaniel Kastan

BrainNRKSLR

2011S Pro NS
Insurgency

Kai Wang &
Daniel Evangelakos

DalekKWDE

2012F Williams Maze
2012

Jonas Luebbers ElephantJL

2012F Williams NS
Metropolis

Nigel Munoz BlackMageNW

2012F Pro NS
Metropolis

Kai Wang
& Dan Evangelakos

KaledKWDE

The Darwin Game 2.2 Player’s Handbook / _ 10

9 / Index of Maps
mz_1: “First Try”

mz_2: “Round the Corner”

mz_3: “Make a Choice”

mz_4: “Side Passage”

mz_5: “Loopy”

The Darwin Game 2.2 Player’s Handbook / _ 11

mz_6: “Thorny”

mz_central: “Central”

mz_hyperion: “Hyperion Astra”

mz_pacman: “Ms. Pac-Man”

The Darwin Game 2.2 Player’s Handbook / _ 12

mz_small: “Small”

mz_spyrus: “Spyrus”

mz_spyrus3: “Triple Spyrus”

The Darwin Game 2.2 Player’s Handbook / _ 13

mz_teamcentral: “Team Central”

ns_arena: “Arena”

ns_arena4: “Arena (4 player)”

ns_tunnel: “Tunnel”

The Darwin Game 2.2 Player’s Handbook / _ 14

ns_chaos: “Courts of Chaos”

ns_chaos4: “Courts of Chaos (4 player)”

ns_choke: “Chokepoint”

ns_doubletime: “Double Time”

The Darwin Game 2.2 Player’s Handbook / _ 15

ns_dust: “Dust”

ns_empty: “Empty”

ns_faceoff: “Faceoff!”

ns_fish: “Fishbowl”

ns_fortress4: “Fortress”

The Darwin Game 2.2 Player’s Handbook / _ 16

ns_harvest3: “Harvester of Sorrow (3 player)”

ns_insurgency: “Insurgency”

ns_insurgency4: “Insurgency (4 player)”

ns_labyrinth4: “Labyrinth (4 player)”

The Darwin Game 2.2 Player’s Handbook / _ 17

ns_maelstrom: “Maelstrom”

ns_metropolis4: “Metropolis”

ns_pathfinding: “Pathfinding”

ns_resource: “Resource Race”

ns_tanhauser: “Tanhauser Gate”

The Darwin Game 2.2 Player’s Handbook / _ 18

ns_tunnel: “Tunnel”

The Darwin Game 2.2 Player’s Handbook / _ 19

Advanced Topics

The Darwin Game 2.2 Player’s Handbook / _ 20

10 / Images
You can customize the way the Simulator renders your Creature in the 3D view
by providing four images, called sprites. Each image must be in PNG format and
be no larger than 40×60 pixels. The images must be named Creature-D.png,
where D is one of N, S, E, W and Creature is the name of your creature’s class.
Below are four images for the Pirate Creature.

Images are drawn from a 45-degree isometric perspective. NS and EW lines
should be diagonals with a Y:X slope of 1:2. When drawing these it often helps
to look at Wall.png to get the perspective right. Since this is the perspective used
for many 2D games like Age of Empires, SimCity, Diablo, and Habbo Hotel you
can often use sprite images from those games (you can’t publicly distribute such
sprites, though, because they are copyrighted by the respective developers). A
huge list of sprites ripped from 2D games can be found at
http://sdb.drshnaps.com/index.htm.

Sprites should have transparent backgrounds. The center of the ground
square is in the horizontal center of the sprite and about 8 pixels from the bottom
of the sprite. Drawing a subtle drop shadow under a sprite helps makes it appear
to actually be standing on the ground.

11 / Sounds
You can customize the sounds that play when your creature takes actions. These
must be in .wav audio format and have a limit on their maximum length. The
names and length limits are specified below:

 Name Maximum Length Condition
 Creature-Win.wav 6.5 sec Victory
 Creature-Attack1.wav 1.2 sec Successful attack
 Creature-Attack2.wav 1.2 sec Successful attack

The attack sounds do not play in the current version of the simulator but are
reserved for future use.

Pirate-N.png

Pirate-E.png

Pirate-S.png

Pirate-W.png

The Darwin Game 2.2 Player’s Handbook / _ 21

12 / Maps
You do not have to create maps to play Darwin, however you may find it useful
to make small test maps when debugging your creature. For example, the
provided mz_1 through mz_6 maps are simple test cases to help you with basic
map navigation.

Maps are ASCII files. The first line optionally begins with a quoted graphics-
pack file name. It must then contain the width and height of the map and the map
title, separated by spaces and terminated by a newline. The remaining lines form
a picture of the map. The elements available are:

• ' ' Empty square
• 'X', '%' and '#' Walls (in different colors)
• '+' Hazard
• 'f' Flytrap (which is a Creature)
• 'a' Apple (which is a Creature)
• 'e' Enchanted Apple (which is a Creature)
• '*' Treasure (which is a Creature)
• '0'…'9' Spawn locations of Creature subclasses
• ':’ ,'F','A','E','T' Empty square, flytrap, apple, enchanted

apple, or hazard in fog (experimental, not used in 2012)
• '.’ Mud
• 's’ Shrine belonging to the closest spawning species

At load time, the outer border of the map is forced to be all Walls regardless of
what was specified in the map file.

By convention, maze maps are named mz_mapname.map. They contain a
single Treasure (the goal) and a single 0 that is the start position. It is possible to
make mazes with multiple treasures; for these all Treasures must be attacked to
win. Natural Selection (“deathmatch”) maps are named ns_mapname.map and
may have any combination of elements.

As an example, the text file for the “Faceoff!” map is shown below.

The Darwin Game 2.2 Player’s Handbook / _ 22

“default.gfx” 29 29 Faceoff!
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX X X X X X X X X X X X X XX
X X
XX XXXXX XX
X X 1 X X 1 X X
XX X 1 XXX XX
X 1 X X
XX X 11X 1 1 XX
X XXXXX X
XX 1 XXXX XX
X X
XX XX
XXXXXX+XXXX+X X+X XXXXX XX XX
XX a a a XX
X a a+a a X
XX a a a + XX
XX XX XXXXX X+X X+XXXX+XXXXXX
XX XX
X X
XX XXXX 0 XX
X XXXXX X
XX 0 0 X00 X XX
X X 0 X
XX XXX 0 X XX
X X 0 X X 0 X X
XX XXXXX XX
X X
XX X X X X X X X X X X X X XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

13 / Graphics Packs
You do not have to create graphics packs to play Darwin.

A graphics pack is a file with the extension .gfx and a set of .png images
referenced by it. Every map references a graphics pack, or default.gfx by default.
The graphics pack changes the appearance of the map in the 3D view. It is
purely cosmetic and has no impact on gameplay.
 The .gfx file lists the images used for non-Creature map elements as double-
quoted strings in the order: wall1 (X), wall2 (#), wall3 (%), thorn (+), floor (‘ ‘),
fog (:). All images should be at most 40 pixels wide and drawn on the same
isometric 2:1 aspect as characters.

The Darwin Game 2.2 Player’s Handbook / _ 23

14 / New Features

New in 2012
Mud slows creatures down. This is intended to make pathfinding more
interesting.

Enchanted creatures can ascend if they step on a shrine for their species.
Multiple ascensions are a new way to win a game. Creatures spawn enchanted
when they are converted from another enchanted creature. When they ascend,
they are reincarnated as a non-enchanted creature.

Natural selection maps are about four times larger this year and always feature
four competing creatures. This is intended to create more interesting play in the
face of creatures that are purely defensive and to encourage collusion and
metagaming among players.

Experimental
Fog can exist on any location. Creatures entering a fogged location (even from
another fogged location) pay a movement time cost penalty. Fog creates an
Observation during observe(), so a creature can only see one square ahead in a
fogged area and only creatures on the very edge of a fogged area are visible from
outside. I designed this feature to support three strategies in particular: path-
finding with variable movement cost, lurking in fog, and hiding in fog. Fog will
not appear on any Tournament map this year.

