
Graphical User Interfaces 2 

CSCI 136: Fundamentals of Computer Science II  •  Keith Vertanen  •  Copyright © 2011 CSCI 136: Fundamentals of Computer Science II  •  Keith Vertanen 



Overview 

2 

• Extending JFrame 

• Dialog boxes 

– Getting user input 

– Displaying message or error 

• Drawing shapes and images 

– JPanel 

• Listening for input 

– Mouse  

– Keyboard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Extending JFrame 

• Approach 1: (last lecture) 

– main() creates instance of the class 

– Runs instance method, e.g. go()  

• Creates a JFrame and associated GUI elements 

– How Head First Java does it 

– Preferred method  

• Approach 2: 

– Create a class that extends JFrame 

– Constructor handles GUI setup 

– No need to create a JFrame 

– Main program class instantiates the class 

 3 



import javax.swing.*; 
import java.awt.event.*; 
 
public class ButtonCount implements ActionListener 
{ 
   private int count = 0; 
   private JButton button; 
 

   public void actionPerformed(ActionEvent event) 
   { 
      count++; 
      button.setText("count = " + count); 
   } 
 

   public void go() 
   { 
      JFrame frame = new JFrame("ButtonCount"); 
      button = new JButton("count = " + count); 
      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
      frame.getContentPane().add(button); 
      frame.setSize(300,300); 
      frame.setVisible(true); 
      button.addActionListener(this); 
   } 
 

   public static void main(String [] args)  
   { 
      ButtonCount gui = new ButtonCount(); 
      gui.go();  
   } 
} 

Approach 1: 
Create an object and run 
a method that explicitly 

creates JFrame 

4 



import javax.swing.*; 
import java.awt.event.*; 
 
public class ButtonCount2 extends JFrame implements ActionListener 
{ 
   private int count = 0; 
   private JButton button; 
 

   public void actionPerformed(ActionEvent event) 
   { 
      count++; 
      button.setText("count = " + count); 
   } 
 

   public ButtonCount2() 
   { 
      super("ButtonCount2"); 
 
      button = new JButton("count = " + count); 
      setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
      getContentPane().add(button); 
      setSize(300,300); 
      setVisible(true); 
      button.addActionListener(this); 
   } 
 

   public static void main(String [] args)  
   { 
      ButtonCount2 gui = new ButtonCount2(); 
   } 
} 

Approach 2: 
Make a class that 
extends JFrame 

5 

Calls JFrame constructor 
that takes the window 
title as a parameter. 

These are instance methods of JFrame, 
but we are a JFrame, so no need to put 
anything before method name. 



Dialog boxes 

• Dialog boxes 

– Asks a question 

– Or gives an error, information, etc. 

– Typically modal  

• Blocks rest of GUI until closed 

– Displays different icons depending on parameter 

 

6 

Constant Java look and feel Windows look and feel 

JOptionPane.ERROR_MESSAGE 

JOptionPane.INFORMATION_MESSAGE 

JOptionPane.WARNING_MESSAGE 

JOptionPane.QUESTION_MESSAGE 

JOptionPane.PLAIN_MESSAGE 



public class NameDialog  
{ 
   public static void main(String [] args) 
   { 
      String name = JOptionPane.showInputDialog("What is your name?"); 
 
      JOptionPane.showMessageDialog(null,  
                                    "Hello there " + name + "!",  
                                    "Greetings", 
                                    JOptionPane.PLAIN_MESSAGE); 
   } 
} 

OK 
(text entered) 

OK 
(no text entered) 

Cancel 

Normally a 
reference to the 
JFrame object 

7 



public class YesNoDialog  
{ 
   public static void main(String [] args) 
   { 
      int result = JOptionPane.showConfirmDialog(null, 
                                                 "Are we having fun yet?", 
                                                 "Question", 
                                                 JOptionPane.YES_NO_OPTION); 
                                   
      JOptionPane.showMessageDialog(null,  
                                    "Answer = " + result,  
                                    "Result", 
                                    JOptionPane.PLAIN_MESSAGE); 
   } 
} 

No 
(Windows 7) 

http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html#dialogdemo 

Lots of other dialog 
related options, see: 

8 

http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html


Panels 

• JPanel 

– Purpose 1: Container for other widgets 

• Allows more control of layout 

– Purpose 2: Place to draw lines, circles, images, etc. 

• Like StdDraw 

– Needs to be added to a JFrame 

– Class that extends JPanel, drawing done by: 
• public void paintComponent(Graphics g) 

• Called automatically when needed  
– e.g. window resized 

• Or by calling repaint() on JFrame 

 

 

 
9 



10 

public class MyDrawPanel extends JPanel  
{ 
    public void paintComponent(Graphics g)  
    { 
        g.setColor(Color.ORANGE); 
        g.fillRect(20,50,100,100); 
 

        g.setColor(new Color(1.0f, 0.0f, 1.0f));         
        g.drawLine(0, 0, 100, 100); 
 

        g.setColor(Color.BLUE); 
        g.fillOval(200, 100, 50, 25); 
         

        BufferedImage image = null; 
        try 
        { 
            image = ImageIO.read(new File("cat.jpg")); 
        } 
        catch (IOException e) 
        { 
            e.printStackTrace(); 
        } 
        g.drawImage(image, 70, 170, null); 
    } 
} public class Panel  

{ 
   public static void main(String [] args)  
   { 
      JFrame frame = new JFrame(); 
 

      MyDrawPanel panel = new MyDrawPanel(); 
      frame.getContentPane().add(BorderLayout.CENTER, panel); 
 

      frame.setSize(400, 400); 
      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
      frame.setVisible(true); 
   } 
} 



Drawing images 

• Loading a JPG, PNG, GIF: 

– Construct BufferedImage using static method 

– Pass it a File object constructed using filename 

– Will be null on error 

– ImageIO.read can throw IOException 

11 

BufferedImage image = ImageIO.read(new File("cat.jpg")); 
if (image != null) 
{ 
   int width  = image.getWidth(); 
   int height = image.getHeight(); 
} 

Special static method that constructs 
an object of type BufferedImage. 



Drawing images 

• Drawing on a panel 

– In the paintComponent(Graphics g) method 
• g.drawImage(Image image, int x, int y,                                        
   ImageObserver obs) 

– NOTE: (x, y) is the upper-left corner of image 

– Keep the BufferedImage object around  

• Avoid loading from disk each time you need it 

12 

g.drawImage(image, 0, 0, null); 

The component (e.g. JFrame, JPanel) that gets notified if 
image was not completely loaded when drawImage was 
first called. We can just say null since we always load 
image from disk before calling. 



Mouse input 

• MouseListener 

– Watches for mouse entry/exit from component 

– Watches for button events 

– No events if just moving mouse inside component 

– Only if inside the listening component! 

13 

Method Purpose 

mousePressed(MouseEvent) 
After the user presses a mouse button while the 
cursor is over the component. 

mouseReleased(MouseEvent) 
After the user releases a mouse button after a mouse 
press over the component. 

mouseClicked(MouseEvent) 
After the user clicks the component (after the user 
has pressed and released). 

mouseEntered(MouseEvent) After the cursor enters bounds of the component. 

mouseExited(MouseEvent) After the cursor exits bounds of the component. 



Mouse input 

• MouseEvent 

– (x, y) pixel coordinate: (0,0) is upper-left 

– Number of consecutive clicks 

– Button that changed state (pushed, released, clicked) 

 

14 

Method Purpose 

int getClickCount() 
Number of quick, consecutive clicks (including this event). 
For example, returns 2 for a double click. 

int getX() Get the x-coordinate at which event occurred 

int getY() Get the y-coordinate at which event occurred 

Point getPoint() Return a Point object containing event location 

int getButton() 
Which button changed state: NOBUTTON, BUTTON1, BUTTON2, 
or BUTTON3. 



Mouse input example 1 

• GUI with a single big text area 

– Add line of text to area on MouseListener event 

– Output event type and mouse (x, y) 

– Events only triggered in JTextArea not JButton 

15 MouseTextBox.java 

JTextArea widget 

JScrollPane 
widget that 
contains the 
JTextArea widget 

Ye Olde JButton 
widget 



Mouse motion 

• MouseMotionListener 

– Detects movement of mouse inside a component 

– With or without the mouse pressed 

16 

Method Purpose 

mouseMoved(MouseEvent) 
User is moving the mouse with no mouse button 
pressed. 

mouseDragged(MouseEvent) 

User is moving the mouse while holding a mouse 
button down (i.e. a dragging action). Always 
preceded by call to mousePressed event. 



Mouse motion example 2 

• Simple drawing application 

– During MouseDragged event, add Point objects 

– Requires a custom JPanel that draws all the points 

• Override paintComponent(Graphics g) method 

– Also display current mouse (x, y) in upper-left 

17 

MouseDraw.java 
MouseDrawPanel.java 

MouseDrawPanel 
extends JPanel 



Keyboard input 

• KeyListener 

– When a key is pressed, released, or typed 

• Typed event only for printable characters  
– Not arrow keys, etc. 

• Numeric key codes for all event types 

– Component must have focus to fire event 

• For custom components (e.g. game drawing panel): 
– Ensure it can accept focus: setFocusable(true) 

– mouseClicked() handler that calls requestFocusInWindow() 

– Or make all other UI widgets not focusable 

 

 

18 

Method Purpose 

keyTyped(KeyEvent) Called just after user types a Unicode character 

keyPressed(KeyEvent) Called just after the user presses a key 

keyReleased(KeyEvent) Called just after the user releases a key 



Keyboard input 

• KeyEvent 

– Figure out what was typed or pressed 

– Actual character for typed events 

– Only key code for pressed/released events 

19 

Method Purpose 

int getKeyChar() 
Return Unicode character of event, only use for key typed 
events. 

int getKeyCode() 
Return the key code associated with event. For example, 
VK_A = letter A, VK_DOWN = down arrow key. 

int getModifiersEx() 
Extended modifier mask for the event, such as whether 
shift or alt key was down. 



Keyboard input example 

• Listen for keyboard events 

– Output text about each event 

 

20 

JPanel forced to 
always have focus 

JTextArea inside 
a JScrollPane 

KeyTextBox.java 



Summary 

• Extending JFrame 

– Constructor sets up the GUI widgets 

• Dialog boxes 

– Collect a response, provide info or error 

• Drawing shapes and images 

– Requires a JPanel 

• Responding to mouse and keyboard events 

– MouseListener for click related events 

– MouseMotionListener for tracking mouse 

– KeyListener for keyboard events 

21 


