Modern Cryptography

Overview

- Historical cryptography
- WWII allied encryption
- Modern cryptography
- Symmetric cryptography
- DES/3DES
- AES
- Asymmetric cryptography
- Diffie-Hellman key exchange
- RSA

Allied encryption

- Typex
- British army and air force
- 5 rotors
- ECM Mark II (SIGABA)

- United States
- 15 rotors
- No known successful cryptanalysis during service lifetime
- But big, expensive, fragile

Navy Department, Office of Chief of Naval Operations, Washington, D.C.
CLASSIFICATION: CONFIDENTIAL Date: 27 Dec 1943
CARELESS COMMUNICATIONS COST LIVES
The following is a list of some of common violations of security principles:
DRAFTING:
Unnecessary word repetition
Unnecessary or improper punctuation
Plain language reply to encrypted dispatch
Classification too high
Precedence too high
Cancellation in plain language of an encrypted dispatch
ENCRYPTION:
"XYX" or "X"'s for nulls
"XX" \& "KK" to separate padding from text
Same letters at both ends to separate padding from text
Continuity of padding
Seasonal and stereotyped padding
Repetition of generatrices (Ed. Note: CSP-845)
Systematic selection of generatrices (Ed. Note: CSP-845)
Using plain text column for encryption (Ed. Note: CSP-845)
Proper strips not eliminated as prescribed by internal indicator (Ed. Note: CSP- 845)
Improper set-up according to date
Using system not held by all addressees
Failing to use system of narrowest distribution
CALLS:
Enciphering indefinite call sign
Enciphering call signs of shore activities
CODRESS might have been used

Code talkers

- Machine based encryption
- Heavy equipment
- Slow to perform
- Code talking

- Use Native American languages
- Started in WWI with Choctaw
- Improvise phrases for out-of-vocabulary words
- "big gun" = artillery
- "little gun shoot fast" = machine gun

Code talkers

- Navajo code talkers
- WW II
- Few outsiders had learned the unwritten language
- 3 line message, 20 seconds vs. machine 30 min
- Lexicon of 274 words + phonetic alphabet

http://library.thinkquest.org/28005/flashed/timemachine/courseofhistory/navajo-dic.shtml

Modern cryptography

- Moving into computer age
- Not limited to physical engineering constraints
- 100's of rotors instead of 3, changing in complex ways
- Much faster
- Scrambling at the bit level
- Symmetric encryption (what we've seen thus far)
- Encrypting message M with key $K: \quad E_{k}(M)=C$
- Decrypting ciphertext C with key K : $\quad D_{K}(C)=M$
$-D_{K}\left(E_{K}(M)\right)=M$
- Stream cipher (bit level) vs. Block cipher (multiple bytes)

DES

- Data Encryption Standard (DES)
- NIST wanted a government standard
- Developed from IBM's Lucifer cipher
- With "cooperation" from NSA
- Improved S-boxes
- Reduced key length from 64 to 48 bits
- 1976 approved as a standard
- Same hardware can encrypt/decrypt
"DES did more to galvanize the field of cryptanalysis than anything else. Now there was an algorithm to study: one that the NSA said was secure"
-Bruce Schneier

F

for 16 rounds

F

Overall structure

Breaking DES

- Key size, 72 quadrillion
$-2^{56}=72,057,594,037,927,936$
- DES Challenges (brute force)

- Sponsored by RSA Security
- Challenge I: 96 days, Internet users
- Challenge II: 41 days, distributed.net
- Challenge II-2: 56 hours, EFF deep crack
- \$250,000 to develop, \$10,000 prize

- 90 billion keys/second
- Challenge III: 22 hours, EFF+distributed.net
- 2008, FPGA, 1 day

Stronger symmetric schemes

- Triple DES (3DES)
- Ciphertext: $\quad \mathrm{E}_{\mathrm{K} 3}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\right.\right.$ plaintext $\left.\left.)\right)\right)$
- Plaintext: $\quad \mathrm{D}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{D}_{\mathrm{K} 3}(\right.\right.$ ciphertext $\left.\left.)\right)\right)$
- Keying option 1: K1 $\neq \mathrm{K} 2 \neq \mathrm{K} 3$
- 168-bits instead of 56-bits
- Advantages:
- Uses DES, most analyzed crypto algorithm
- No known effective attack besides brute-force
- Disadvantages:
- Slow in software, DES designed for 1970's hardware
- Small block size of 64-bits

AES

- Advanced Encryption Standard (AES)
- 2001 new NIST standard, Rijndael
- Symmetric block cipher
- Key lengths of 128, 192, and 256 bits
- Approved by NSA for top secret information

Key exchange

- Thus far: symmetric encryption
- Alice and Bob need to have shared secret
- But how do you distribute?
- Doesn't scale

Diffie-Hellman

- Diffie-Helman (DH) key exchange
- 1976, Whitfield Diffie \& Martin Hellman
- Alice and Bob agree on a private secret:
- On a public channel
- Where Eve hears all the traffic
- Only Alice and Bob end up knowing the secret
- Relies on one-way function
- Function must be easy to do, but difficult to undo

[^0]ieEe transactions on information theory, vol. it-22, no. 6, november 1976
New Directions in Cryptography
Invited Paper
WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Whitfield Diffie

Martin Hellman

Alice

$=$

Secret colours

Common secret
Common paint

Secret colours
(assume
that mixture separation is expensive)
$=$

=

Alice

Bob

Alice and Bob agree publically on values for Y and P for the one-way function:

$$
Y^{x}(\bmod P), \text { e.g. } Y=7, P=11
$$

Alice chooses secret number:

$$
\begin{aligned}
A & =3 \\
\alpha & =7^{A}(\bmod 11) \\
& =7^{3}(\bmod 11) \\
& =343(\bmod 11) \\
& =2
\end{aligned}
$$

Sends $\alpha=2$ to Bob
Using Bob's result:
$\beta^{A}(\bmod 11)$
$4^{3}(\bmod 11)=9$
$7^{B * A}(\bmod 11)$

Bob chooses secret number:
$B=6$
$\beta=7^{B}(\bmod 11)$
$=7^{6}(\bmod 11)$
$=117649(\bmod 11)$

$$
=4
$$

Sends $\beta=4$ to Alice
Using Alice's result
$\alpha^{B}(\bmod 11)$
$2^{6}(\bmod 11)=9$
$7{ }^{\text {A*B }}(\bmod 11)$

Public key cryptography

- Diffie-Helman key exchange
- Both parties had to be around to negotiate secret
- Symmetric encryption
- Encrypting message M with key $K: \quad E_{k}(M)=C$
- Decrypting ciphertext C with key $K: \quad D_{K}(C)=M$
- Asymmetric encryption
- 1975, Diffie conceives of idea
- Users have a private key and a public key
- Alice encrypts plaintext with Bob's public key
- Only Bob can (tractably) decrypt using his private key
- Special one-way function
- Hard to reverse unless you know something special

RSA

- RSA public key encryption
- 1977, Rivest, Shamir, Adlerman
- Choose two prime numbers, p and q
- Public key: $\mathrm{N}=\mathrm{pq}$
- Private key: p and q
- If N is product of two large primes, factoring is "hard"
- 1973, equivalent algorithm, Clifford Cocks (GCHQ)
http://www.youtube.com/watch?v=wXB-V Keiu8

RSA example

Bob

Alice picks two giant primes, p and q e.g. $p=61, q=53$
$N=p * q=61 * 53=3233$
$(p-1) *(q-1)=60 * 52=3120$
Find number $1<e<3120$, e is relatively prime with 3120 , say e $=17$

Alice's public key: $\mathbf{N}=3233, \mathrm{e}=17$

Bob wants to send message 65 to Alice, looks up her public key.

$$
\begin{aligned}
& C=M^{e}(\bmod N) \\
& C=65^{17}(\bmod 3233)=2790
\end{aligned}
$$

RSA example

Bob

Bob wants to send message 65 to Alice, looks up her public key.
$C=M^{e}(\bmod N)$
$C=65^{17}(\bmod 3233)=2790$
Compute special number d
$e^{*} d=1(\bmod (p-1) *(q-1)$
17 * d = $1(\bmod 3120)$
d = 2753 (using Euclid's algorithm)
Alice's private key $d=2753$, or p and q
Decrypt message:
$\mathrm{M}=\mathrm{C}^{\mathrm{d}}(\bmod \mathrm{N})$
$M=2790^{2753}(\bmod 3233)=65$

RSA security

- Attacks on RSA
- Brute force
$O\left(\exp \left(\left(\frac{64}{9} b\right)^{\frac{1}{3}}(\log b)^{\frac{2}{3}}\right)\right)$

General number field sieve, b-bit number

- Try all possible private keys
- Use a large key space, but large keys slows things down
- RSA is not as fast as symmetric crypto
- ~1000 times slower in hardware than DES
- Mathematical
- Factoring the product of two large primes
- Timing
- Keep track of how long it takes to decipher messages
- Chosen ciphertext

```
2009:
768-bit RSA factored using hundreds of machines in 2 years
```

Unsolved problems in computer science
Can integer factorization be done in polynomial time?

Summary

- Historical cryptography
- Code talkers
- Modern cryptography
- Computer-based symmetric ciphers
- DES, 3DES, AES
- Rise of asymmetric cryptography
- Diffie-Hellman
- RSA

[^0]: 644

 Abstract-Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways th solv hersins provide the tools to solve cryptographic problems of long stand ing.

