
1

CSCI 136 Programming Exam #1
Fundamentals of Computer Science II
Spring 2013

This part of the exam is like a mini-programming assignment. You will create a program, compile it, and
debug it as necessary. This part of the exam is open book and open web. You may use code from the course
web site or from your past assignments. When you are done, submit all your Java source files to the
Moodle exam #1 dropbox. Please double check you have submitted all the required files.

You will have 100 minutes. No communication with any non-staff members is allowed. This includes all
forms of real-world and electronic communication.

Grading. Your program will be graded on correctness and to a lesser degree on clarity (including comments)
and efficiency. You will lose a substantial number of points if your code does not compile or crashes on
typical inputs.

2

Overview. Carnivore was a system implemented by the FBI to monitor Internet traffic. Your task is to

develop a similar program that can check a bunch of email messages to determine which messages contain

certain keywords (e.g. "bomb", "cocaine"). To speed up scanning, your program should scan each email

message in parallel. Each email is stored in an individual file. Start by downloading the file located at:

http://katie.mtech.edu/classes/csci136/carnivore.zip

Details. The program you are developing takes two command-line arguments. If given no arguments, it

prints a helpful message and terminates:

% java Carnivore

Carnivore <file> <keyword 1> [keyword 2] ...

The first argument is the filename of a text file that contains a list of other text files which contain the

actual email messages. For example, here is file6.txt:

mail/arnold-j/54

mail/bass-e/382

mail/baughman-d/367

mail/cuilla-m/76

mail/dasovich-j/602

mail/saibi-e/124

Each of the above is the path to a file that is in the mail subdirectory included in the carnivore.zip file.

The user specifies one or more keywords on the command-line. You can assume keywords given on the

command-line are in lowercase and only consist of the letters a-z and apostrophe.

Below are some example runs of the final finished program. Note that the order of keywords and the order

of the list after the keyword may vary depending upon your implementation.

% java Carnivore file6.txt plutonium

plutonium: mail/saibi-e/124

% java Carnivore file6.txt bomb

bomb: mail/dasovich-j/602 mail/arnold-j/54

% java Carnivore file6.txt plutonium bomb silly

plutonium: mail/saibi-e/124

bomb: mail/dasovich-j/602 mail/arnold-j/54

% java Carnivore file6.txt afghanistan

afghanistan: mail/baughman-d/367 mail/dasovich-j/602 mail/arnold-j/54

% java Carnivore file60.txt plutonium bomb cocaine smuggling afghanistan

cocaine: mail/bass-e/382 mail/cuilla-m/76

plutonium: mail/saibi-e/124

afghanistan: mail/baughman-d/365 mail/dasovich-j/602 mail/baughman-d/367 mail/ar

nold-j/54

smuggling: mail/baughman-d/367 mail/dasovich-j/602

bomb: mail/dasovich-j/602 mail/arnold-j/54

http://katie.mtech.edu/classes/csci136/carnivore.zip

3

Part 1. Develop a class CarnivoreHits that keeps track of which keywords have been found and where.

Note this class should not be doing any file I/O. This class simply tracks the list of files that a given keyword

matched as reported by a client program via the add() method. It can also print out the list of keywords

that have been matched and in what file(s). The class has a simple API with two methods:

public class CarnivoreHits

void add(String keyword, String matched) // track a keyword that has been found
void print() // print out hits to standard output

We have provided a test main() program. Here is our output:

cocaine: msg10.txt
bomb: msg1 msg3 msg10.txt
foo: bar

Output format. Each line of output should start with the keyword followed by a colon and then a space.

After this should be listed all filenames that matched that keyword separated by spaces. You can output

the keywords in any order you like. The matching filenames may be in any order, but a given filename

should only appear once in a list for a particular keyword (e.g. msg1 only appears once in the bomb: list

even though it was added twice by the test main() program).

Part 2. The search for keywords needs to occur in parallel via a multi-threaded program. As such, you first

need to develop the CarnivoreWorker class. An instance of this class is responsible for scanning the

contents of a single filename for keywords and updating the CarnivoreHits object if a keyword is

discovered. Here is a suggested API for the class:

public class CarnivoreWorker implements Runnable

 CarnivoreWorker(String filename, ArrayList<String> keywords, CarnivoreHits hits)
void run()

Keyword matching. A worker should check each word in the file it is responsible for. Words in the files are

assumed to be separated by whitespace. The emails contain mixed case as well as punctuation such as

commas. You should match a keyword even if the email text is in a different case or contains character

besides a-z and apostrophe. For example, if the email contains the sentence "In the Times, I've not found

much information", the keyword "times" would match as would "i've".

Part 3. Create the main program Carnivore. It should operate as described in the introduction making use

of your CarnivoreHits and CarnivoreWorker classes. Each file in the list of files given to Carnivore should

be handled by a separate thread, doing its search in parallel. Make sure to handle concurrency properly so

an accurate report of matching keywords is obtained regardless of how many files are searched

simultaneously.

