Security and authentication


```
root@topi:/etc# more shadow
root:$6$1z2.CqoJ$bIb7H0B7ByvSVcLmpciC5F/H.gADdlI1xa3fQKnnAOEkoZI1YSLDiK2gIKuEb1o
uGjFw8HQDiWYvamlfIj2eu.:15138:0:99999:7:::
daemon:*:15040:0:99999:7:::
keithwork:$6$CRDMx2Qt$B8.0gCJ5P/7TvualkFfAFDQ5a2B0.GgnFBy8iHKb6.jpTN23ZDMja0ILte
1FoE6vzlf7Rt/eiNBSqkVLmx07x0:15135:0:99999:7:::
mysql:!:15087:0:99999:7:::
httpd:!:15133:0:99999:7:::
keithbackup:$6$whkE4GJT$yUMQ6Ywhp636KSrNqv/7sn8FvaF/V8Vc3FUe.AOFacOt1FfIu1vyJLtF
bXHZW0i7n2qMPCHQ9wLxpBmqs4iJi/:15164:0:99999:7:::
```

Overview

- Authentication
 - Passwords
 - One-way hashing
 - Salting passwords
 - Other forms: tokens, biometrics
 - Digital signing
 - Public key based signing
 - PKI, CA
- Pretty Good Privacy (PGP)
- Securing web commerce
 - Secure Socket Layer (SSL), Transport Layer Security (TLS)
 - https

Authentication

- Proving your identify
 - Something you know
 - e.g. password, PIN, favorite pet
 - Something you possess
 - e.g. a key, smart card
 - Something you are
 - e.g. fingerprints, retina, face
 - Something you do
 - e.g. voice pattern, handwriting, typing rhythm
- Means of authentication
 - Password
 - Token-based
 - Biometric

Password authentication

- Users choose some secret password
 - Differing levels of required complexity/annoyance

https://xkcd.com/936/

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Password storage

- User ID and password
 - Must be stored somewhere, e.g. /etc/passwd
 - Shadow password file, e.g. /etc/shadow
 - Reachable only by privileged users

```
$ more passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
keithwork:x:1000:1000::/home/keithwork:/bin/sh
mysql:x:104:110:MySQL Server,,,:/nonexistent:/bin/false
httpd:x:1001:1001::/home/httpd:/bin/sh
keithbackup:x:1005:1005::/home/keithbackup:/bin/sh
```

```
root@topi:/etc# more shadow
root:$6$1z2.CqoJ$bIb7HOB7ByvSVcLmpciC5F/H.gADdlI1xa3fQKnnAOEkoZI1YSLDiK2gIKuEb1o
uGjFw8HQDiWYvamlfIj2eu.:15138:0:99999:7:::
daemon:*:15040:0:99999:7:::
keithwork:$6$CRDMx2Qt$B8.0gCJ5P/7TvualkFfAFDQ5a2B0.GgnFBy8iHKb6.jpTN23ZDMja0ILte
1FoE6vzlf7Rt/eiNBSqkVLmx07x0:15135:0:99999:7:::
mysql:!:15087:0:99999:7:::
httpd:!:15133:0:99999:7:::
keithbackup:$6$whkE4GJT$yUMQ6Ywhp636KSrNqv/7sn8FvaF/V8Vc3FUe.AOFacOt1FfIu1vyJLtF
bXHZW0i7n2qMPCHQ9wLxpBmqs4iJi/:15164:0:99999:7:::
```

Hashing

- Normal hash functions:
 - Key: large data set of variable length
 - Value: smaller data set of fixed length
 - e.g. checksum, CRC

Secure hashing

Secure hash functions:

- H(x) easy to compute for x
- One-way: given h, intractable to find x such that H(x)=h
- e.g. MD5 (128 bits), SHA-1 (160 bits), SHA-256 (256 bits),
 SHA-512 (512 bits)

Secure hashing

Desirable properties

- Preimage resistant, one-way
 - For any code h, intractable to find x s.t. H(x) = h
- Second preimage resistant, weak collision resistant
 - For any block x, intractable to find y ≠ x s.t. H(y) = H(x)
- Strong collision resistant
 - Intractable to find any pair (x, y) s.t. H(x) = H(y)

Uses:

- One-way encryption of passwords
 - Store only the hash, not the encrypted plaintext
- Intrusion detection
 - Detect changes to a file
- Digital signing of messages (stay tuned)

One iteration within the SHA-1 compression function:

A, B, C, D and E are 32-bit words of the state;
F is a nonlinear function that varies;
<-<_n denotes a left bit rotation by n places;
n varies for each operation;
W_t is the expanded message word of round t;
K_t is the round constant of round t;
Box with plus denotes addition modulo 2³².

Attacking passwords

- If hashed password file compromised
 - Attacker knows users with same password
 - Attacker can tell if user has same password on multiple systems
 - Attacker can use an offline dictionary attack
- Dictionary attack
 - Precompute hash value for
 - All sequences of a given (shortish) length
 - Common words
 - Check for match against hash value in password file

Salt

Salting passwords

- On account creation, system chooses fixed-length salt value
 - Timestamp
 - Random value
- Salt value stored unencrypted associated with user ID
- Stored hash computed from salt plus user password
- Makes dictionary attack much more expensive

```
root@topi:/etc# more shadow
root:$6$1z2.CqoJ$bIb7HOB7ByvSVcLmpciC5F/H.gADdlI1xa3fQKnnAOEkoZI1YSLDiK2gIKuEb1o
uGjFw8HQDiWYvamlfIj2eu.:15138:0:99999:7:::
daemon:*:15040:0:99999:7:::
keithwork:$6$CRDMx2Qt$B8.0gCJ5P/7TvualkFfAFDQ5a2B0.GgnFBy8iHKb6.jpTN23ZDMja0ILte
1FoE6vzlf7Rt/eiNBSqkVLmx07x0:15135:0:99999:7:::
mysql:!:15087:0:99999:7:::
httpd:!:15133:0:99999:7:::
keithbackup:$6$whkE4GJT$yUMQ6Ywhp636KSrNqv/7sn8FvaF/V8Vc3FUe.AOFacOt1FfIu1vyJLtF
bXHZW0i7n2qMPCHQ9wLxpBmqs4iJi/:15164:0:99999:7:::
```

Improving password security

- Reactive password checking
 - System periodically attacks itself, revokes passwords it guesses
- Proactive password checker
 - Users selects a candidate password
 - System checks to see if allowable
 - Hopefully guide users to secure choice without annoying them too much

Improving password security

User education

- Encourage/force longer more complex passwords
- e.g. Users often mistakenly believe reversing word makes password unguessable
- Use first letter of personal phrase "My dog's first name is Rex" -> "MdfniR"

Computer-generated passwords

- Normally low acceptance, users write them down
- Generate pronounceable syllables, FIPS PUB 181

Token-based authentication

- Require users possess some object
 - Unique ID based on magnetic strip, embedded microprocessor
 - e.g. ATM card
- Often in combination with user knowledge
 - e.g. ATM PIN

Biometric authentication

- Pattern recognition based
 - Facial recognition: relative location of facial features
 - Fingerprints: ridges and furrows on fingertip
 - Hand geometry: shape, length, width of fingers
 - Retinal: veins beneath retinal surface
 - Iris: structure of the iris
 - Signature: style of handwriting
 - Voice: patterns in speech signal
- Verification: proving you are who you say
- Identification: find out who you are

Biometric characteristics

Digital signing

Normal public-key encryption

- Bob is the only one to decrypt using his private key
- Message is a love letter claiming to be from Alice

Digital signing

- Digital signing via public key crypto
 - Alice encrypts message with her private key
 - Everybody can decrypt using Alice's public key
 - But it proves it came from Alice since no one else has her private key
 - Encrypt result with Bob's public key
 - Only Bob can decrypt using his private key
 - Asymmetric crypto on entire message can be expense
 - Hash the message
 - Encrypt just the hash

Hash based digital signing

Signing Hash 101100110101 function Hash Data Encrypt hash using signer's private key ┅ 111101101110 Certificate Signature Attach to data Digitally signed data

Verification

If the hashes are equal, the signature is valid.

Distributing public keys

- Alice has to find Bob's public key
 - How does she know it is really Bob's?
 - Someone else could impersonate Bob
 - Eve fools Alice into using her fake version of Bob's public key
 - Eve decrypts using fake Bob's private key
 - Eve reads message
 - Reencrypts using Bob's real public key and sends on

Problems:

- How do we distribute public keys?
- How to establish the trust of those keys?

PKI

- Public Key Infrastructure (PKI)
 - Certificate Authority (CA)
 - Verifies user is who they say they are
 - Digitally signs the user's public key
 - e.g. VeriSign

http://blog.securism.com/2009/01/summarizing-pki-certificate-validation/

PGP

- Pretty Good Privacy (PGP)
 - 1991 Phil Zimmermann

"In the past, if the Government wanted to violate the privacy of ordinary citizens, it had to expend a certain amount of effort to intercept and steam open and read paper mail, and listen to and possibly transcribe spoken telephone conversation. This is analogous to catching fish with a hook and a line, one fish at a time. Fortunately for freedom and democracy, this kind of labor-intensive monitoring is not practical on a large scale.

Today, electronic mail is gradually replacing conventional paper mail, and is soon to be the norm for everyone, not the novelty is is today. Unlike paper mail, E mail messages are just too easy to intercept and scan for interesting keywords. This can be done easily, routinely, automatically, and undetectably on a grand scale. This is analogous to driftnet fishing-- making a quantitative and qualitative Orwellian difference to the health of democracy."

-Philip Zimmermann, testimony to Congress

PGP

- Pretty Good Privacy (PGP)
 - Focus on efficiency
 - Key idea:
 - RSA for key exchange
 - Faster symmetric cipher (IDEA) for bulk of data encryption
 - Focus on ease of use
 - Allow average Joe to use strong cryptography
 - User clicks to encrypt/sign an email
 - First widely available public-key crypto
 - Released via friend to the Usenet
 - Problems:
 - RSA was patented by RSA Data Security, Inc.
 - Strong encryption considered a munition by US

Key length

- 384 bits = casual, broken easily today
- 512 bits = commercial, breakable by 3-letter organizations
- 1024 bits = military, not breakable on earth
- 2048 bits = alien, unbreakable on other planets

Securing web commerce

- Customer filling out order form with credit card #
 - Problem 1: Keep data secure from customer's browser to the web server
 - Problem 2: keep data secure on server or in transit to order fulfillment

SSL

- Secure Sockets Layer (SSL) / Transport Layer Security (TLS)
 - Client requests secure connection from server
 - Client sends list of ciphers and hash function supported
 - Server picks the strongest mutual cipher/hash
 - Server sends back digital certificate
 - Name of itself
 - Trusted Certificate Authority (CA)
 - Public encryption key
 - Client contacts CA to confirm public key belongs to site
 - Client generates session key by encrypting random number with server's public key
 - Client and server continue using symmetric cipher

HTTPS

- Hypertext Transfer Protocol Secure (HTTPS)
 - https://
 - Typically running on port 443

Application (HTTP)
Security (SSL)
Transport (TCP)
Network (IP)
Data link (PPP)
Physical (modem, ADSL, cable TV)

Summary

- Proving who you are
 - Passwords, tokens, biometrics
 - Digital signing using public key crypto
- Secure hash functions
 - Digital signing, storage of passwords, detecting changes in files
- PGP
 - Popular application of public key crypto
- Secure web commerce
 - SSL/TLS