Modern Cryptography

Overview

- Historical cryptography
 - WWII allied encryption
- Modern cryptography
 - Symmetric cryptography
 - DES/3DES
 - AES
 - Asymmetric cryptography
 - Diffie-Hellman key exchange
 - RSA

Allied encryption

- Typex
 - British Army and air force
 - 5 rotors
- ECM Mark II
 - Americans
 - 15 rotors

Navy Department, Office of Chief of Naval Operations, Washington, D.C.

CLASSIFICATION: CONFIDENTIAL Date: 27 Dec 1943

CARELESS COMMUNICATIONS COST LIVES

The following is a list of some of common violations of security principles:

DRAFTING:

Unnecessary word repetition

Unnecessary or improper punctuation

Plain language reply to encrypted dispatch

Classification too high

Precedence too high

Cancellation in plain language of an encrypted dispatch

ENCRYPTION:

"XYX" or "X"'s for nulls

"XX" & "KK" to separate padding from text

Same letters at both ends to separate padding from text

Continuity of padding

Seasonal and stereotyped padding

Repetition of generatrices (Ed. Note: CSP-845)

Systematic selection of generatrices (Ed. Note: CSP-845)

Using plain text column for encryption (Ed. Note: CSP-845)

Proper strips not eliminated as prescribed by internal indicator (Ed. Note: CSP- 845)

Improper set-up according to date

Using system not held by all addressees

Failing to use system of narrowest distribution

CALLS:

Enciphering indefinite call sign

Enciphering call signs of shore activities

CODRESS might have been used

Operation of the cipher machine is as important as the cipher itself!

Code talkers

- Machine based encryption
 - Heavy equipment
 - Slow to perform
- Code talking
 - Use Native American languages
 - Started in WWI with Choctaw

- "big gun" = artillery
- "little gun shoot fast" = machine gun

Code talkers

- Navajo code talkers
 - WW II
 - Few outsides had learned the unwritten language
 - 3 line message, 20 seconds vs. machine 30 minutes
 - Compiled lexicon of 274 words + phonetic alphabet

http://library.thinkquest.org/28005/flashed/timemachine/courseofhistory/navajo-dic.shtml

Modern cryptography

Moving into computer age

- Not limited to physical engineering constraints
 - Hundreds of rotors instead of 3
 - Changing in complex ways
- Much faster
- Scrambling at the bit level

Symmetric encryption

- What we've seen thus far
- Encrypting message M with key K: $E_k(M) = C$
- Decrypting ciphertext C with key K: $D_K(C) = M$
- $-D_{K}(E_{K}(M))=M$
- Stream cipher (bit level) vs. Block cipher (multiple bytes)

DES

- Data Encryption Standard (DES)
 - NIST wanted a government-wide standard
 - Developed from IBM's Lucifer cipher
 - With "cooperation" from NSA
 - Improved S-boxes
 - Reduced key length from 64 to 48 bits
 - 1976 approved as a standard

"DES did more to galvanize the field of cryptanalysis than anything else. Now there was an algorithm to study: one that the NSA said was secure"

-Bruce Schneier

Breaking DES

- Key size
 - -56 bits, $2^{56} = 72,057,594,037,927,936$
- DES Challenges
 - Sponsored by RSA Security
 - Challenge I: 96 days
 - Challenge II: 41 days, distributed.net
 - Challenge II-2: 56 hours, EFF deep crack
 - \$250,000 to develop, \$10,000 prize
 - 90 billion keys/second
 - Challenge III: 22 hours, EFF/distributed.net
 - 2008, FPGA, 1 day

Stronger symmetric schemes

3DES

- Use DES to encrypt with one key
- Decrypt with a second key
- Encrypt with a third key
- 168-bits instead of 56-bits
- Advantages:
 - Uses DES, most analyzed algorithm
 - No known effective attack besides brute-force
- Disadvantages:
 - Slow in software, DES designed for 1970's hardware
 - Small block size of 64-bits

AES

- Advanced Encryption Standard (AES)
 - 2001 new NIST standard, Rijndael
 - Symmetric block cipher
 - Key lengths of 128, 192, and 256 bits
 - Approved by NSA for top secret information

Key exchange

- Thus far: symmetric encryption
 - Alice and Bob need to have shared secret
 - But how do you distribute?
 - Doesn't scale

Diffie-Hellman

- Diffie-Helman (DH) key exchange
 - 1976, Whitfield Diffie & Martin Hellman
 - Alice and Bob agree on a private secret:
 - On a public channel
 - Where Eve hears all the traffic
 - Only Alice and Bob end up knowing the secret
 - Relies on one-way function
 - Easy to do but difficult to undo

Alice	Bob	
Alice and Bob agree on values for Y and P for the one-way function Y ^x (mod P), e.g. Y=7, P=11		
Alice chooses secret number A = 3	Alice chooses secret number B = 6	
$\alpha = 7^{A} \pmod{11}$ = $7^{3} \pmod{11}$ = 2	$\beta = 7^{B} \pmod{11}$ = $7^{6} \pmod{11}$ = 4	
Sends α = 2 to Bob	Sends β = 4 to Alice	
Using Bob's result: β^A (mod 11) 4^3 (mod 11) = 9	Using Alice's result α^B (mod 11) 2^6 (mod 11) = 9	

Public key cryptography

- Diffie-Helman key exchange
 - Both parties had to be around to negotiate secret
- Symmetric encryption
 - Encrypting message M with key K: $E_k(M) = C$
 - Decrypting ciphertext C with key K: $D_{K}(C) = M$
- Asymmetric encryption
 - 1975, Diffie conceives of idea
 - Users have a private key and a public key
 - Alice encrypts plaintext with Bob's public key
 - Only Bob can (tractably) decrypt using his private key
 - Special one-way function
 - Hard to reverse unless you know something special

RSA

- RSA public key encryption
 - 1977, Rivest, Shamir, Adlerman
 - Choose two prime numbers, p and q
 - Public key: N = pq
 - Private key: p and q
 - Factoring N that is produced by two large primes is hard

Alice	Bob
Alice picks two giant primes, p and q e.g. p = 61, q = 53	
N = p * q = 61 * 53 = 3233	
(p-1)*(q-1) = 60*52 = 3120 Find number 1< e < 3120, e is relatively prime with 3120, say e = 17 Alice's public key: N = 3233, e = 17	
	Bob wants to send message 65 to Alice, looks up her public key.
	C = M ^e (mod N) C = 65 ¹⁷ (mod 3233) = 2790

Alice	Bob
	Bob wants to send message 65 to Alice, looks up her public key. C = Me (mod N) C = 65 ¹⁷ (mod 3233) = 2790
Compute special number d e * d = 1 (mod (p - 1) * (q - 1) 17 * d = 1 (mod 3120) d = 2753 (using Euclid's algorithm)	
Alice's private key d = 2753, or p and q	
Decrypt message: $M = C^{d} \text{ (mod N)}$ $M = 2790^{2753} \text{ (mod 3233)} = 65$	

RSA security

Attacks on RSA

Brute force

 $O\left(\exp\left(\left(\frac{64}{9}b\right)^{\frac{1}{3}}\left(\log b\right)^{\frac{2}{3}}\right)\right)$

- Try all possible private keys
- Use a large key space, but slows things down
- RSA is not as fast as symmetric crypto
- Mathematical
 - Factoring the product of two large primes
- Timing
 - Keep track of how long it takes to decipher messages
- Chosen ciphertext

2009

768-bit RSA factored using hundreds of machines in 2 years

Unsolved problems in computer science

Can integer factorization be done in polynomial time?

Summary

- Historical cryptography
 - Code talkers
- Modern cryptography
 - Computer-based symmetric ciphers
 - DES, 3DES, AES
 - Rise of asymmetric cryptography
 - Diffie-Hellman
 - RSA