Historical Cryptography

Overview

- Historical cryptography
- Monoalphabetic substitution ciphers
- Breaking them
- Some improvements
- The cipher of Mary Queen of Scots
- Polyalphabetic substitution ciphers
- Unbreakable encryption
- WWI
- Zimmerman telegram
- WWII
- Rise of the cipher machines
- Engima

Monoalphabetic ciphers

- Monoalphabetic cipher
- Use a fixed substitution over entire message
- Assigning the substitutions
- Caesar shift cipher
- Completely random
- 26! ways to assign $\approx 400,000,000,000,000,000,000,000,000$
- But hard to remember
- Based on key phrase
- Shared secret: "ugly black swan"

Monoalphabetic ciphers

- Monoalphabetic cipher
- Use a fixed substitution over entire message
- Assigning the substitutions
- Caesar shift cipher
- Completely random
- 26! ways to assign $\approx 400,000,000,000,000,000,000,000,000$
- But hard to remember a completely random assignment
- Based on key phrase
- Shared secret: "ugly black swan"

a	b	c	d	e	f	g	h	i	j	k	I	m	n	o	p	q	r	s	t	u	v	w	x	y
U	G	L	Y	B	A	C	K	S	W	N														

Monoalphabetic ciphers

- Monoalphabetic cipher
- Use a fixed substitution over entire message
- Assigning the substitutions
- Caesar shift cipher
- Completely random
- 26! ways to assign $\approx 400,000,000,000,000,000,000,000,000$
- But hard to remember a completely random assignment
- Based on key phrase
- Shared secret: "ugly black swan"

a	b	c	d	e	f	g	h	i	j	k	I	m	n	o	p	q	r	s	t	u	v	w	x	y	z
U	G	L	Y	B	A	C	K	S	W	N	D	E	F	H	I	J	M	O	P	Q	R	T	V	X	Z

Monoalphabetic ciphers

- Dominated secret writing
- Codemakers had a seemingly unbreakable code
- No need for further innovation
- At least for most of the first millennium AD
- Breaking monoalphabetic ciphers
- Key idea: frequency analysis
- Arabs ~800 AD

-Abu Yusuf Ya'qūb ibn Isḥāq al-Sabbah al-Kindī

Breaking a monoalphabetic cipher

> LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIX PIJVSZEYPERRGERIMWQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITRE WHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIWXMJ MGCSMWXS JOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXVIZMXFSJXIIK EGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRR FQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIV FVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZ INTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX

Breaking a monoalphabetic cipher

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIX PIJVS ZEYPERRGERIMWQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITRE WHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIWXMJ MGCSMWXS JOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXVIZMXFSJXLIK EGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRR FQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIV FVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZ INTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX

ciphertext	plaintext	
I		most common letter
XL		most common bigram
XLI		most common trigram
E		second most common letter

Breaking a monoalphabetic cipher

heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZethekeet PeJVSZaYPaRRGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRa WHatthattMZeTWAWSQWtSWatTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJ MGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtVezMtFSJthek aGAaWHaPSWYSWeWeaVtheStheVtheRGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRR FQMthaPPtheaCCeaVaWGesJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeV FVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZ entcmtevJSVhmRSCMWMSWVeRCeGtMWYMt

ciphertext	plaintext	
I	e	most common letter
XL	th	most common bigram
XLI	the	most common trigram
E	a	second most common letter

Breaking a monoalphabetic cipher

> heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZetheKeet PeJVSZaYPaRRGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRa WHatthattMZeTWAWSQWtSWatTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJ MGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtVeZMtFSJtheK aGAaWHaPSWYSWeWeaVtheStheVtherGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRR FQMthaPPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeV FVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZ eNTCMteVJSVhMRSCMWMSWVeRCeGtMWYMt

Breaking a monoalphabetic cipher

> heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZetheKeet PeJVSZaYPaRRGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRa WHatthattMZeTWAWSQWtSWatTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJ MGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtVeZMtFSJtheK aGAaWHaPSWYSWeWeaVtheStheVtherGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRR FQMthaPPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeV FVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZ eNTCMteVJSVhMRSCMWMSWVeRCeGtMWYMt

ciphertext	plaintext	
V	r	heVe probably here
R	s	Rtate probably state
M	i	atthattMZe probably atthattime
Z	m	atthattMZe probably atthattime

Breaking a monoalphabetic cipher

> hereTCSWPeYraWHarSseQithaYraOeaWHstatePFairaWHKrSTYhtmetheKeet PeJrSmaYPassGaseiWQhiGhitQaseWGPSseHitQasaKeaTtiJTPsGaraKaeTsa WHatthattimeTWAWSQWtSWatTraPistsSJGSTrseaYreatCriUeiWasGieWtiJ iGCSiWtSJOieQthereQeretQSrSTWHKPaGAsCStsWearSWeeBtremitFSJtheK aGAaWHaPSWYSWeWeartheStherthesGaPesQereeBGeeHiWYPFharHaWHYPSss FQithaPPtheaCCearaWGeSJKTrWisheHYSPHtheQeiYhtSJtheiWseGtQasOer FremarAaKPeaWHtaAiWYaPPthiWYsiWtSGSWsiHeratiSWiGSTPHharHPFKPam eNTCiterJSrhisSCiWiSWresCeGtiWYit

and so on...

Breaking a monoalphabetic cipher

hereuponlegrandarosewithagraveandstatelyairandbroughtmethebeet lefromaglasscaseinwhichitwasencloseditwasabeautifulscarabaeusa ndatthattimeunknowntonaturalistsofcourseagreatprizeinascientif icpointofviewthereweretworoundblackspotsnearoneextremityoftheb ackandalongoneneartheotherthescaleswereexceedinglyhardandgloss ywithalltheappearanceofburnishedgoldtheweightoftheinsectwasver yremarkableandtakingallthingsintoconsiderationicouldhardlyblam ejupiterforhisopinionrespectingit

> Hereupon Legrand arose, with a grave and stately air, and brought me the beetle from a glass case in which it was enclosed. It was a beautiful scarabaeus, and, at that time, unknown to naturalists-of course a great prize in a scientific point of view. There were two round black spots near one extremity of the back, and a long one near the other. The scales were exceedingly hard and glossy, with all the appearance of burnished gold. The weight of the insect was very remarkable, and, taking all things into consideration, I could hardly blame Jupiter for his opinion respecting it.

Or some code from the Internet...

```
c:\Dropbox\mtech\websci\resources>simpsub2.exe
Name of sample ("learning") file: moby.txt
Name of cipher file: mono2.txt
Is the cipher formatted with spaces? (y/n): n
Reading sample file...
Analyzing sample file...
Reading cipher file...
Analyzing cipher file...
Initial closeness is 1.487429, PLEASE WAIT...
DONE! Func value=0.866612
Key is: abcdefghijklmnopqrstuvwxyz
    ekghijylmdapzwscnvrxtoqbfu
hereuponlegrandarosewithagraveandstatelyairandbroughtmetheb
eetlefromaglasscaseinwhichitwasencloseditwasabeautifulscara
baeusandatthattimeunknowntonaturalistsofcourseagreatprizein
ascientificpointofviewthereweretworoundblackspotsnearoneext
remityofthebackandalongoneneartheotherthescaleswereexceedin
glyhardandglossywithalltheappearanceofburnishedgoldtheweigh
toftheinsectwasveryremarkableandtakingallthingsintoconsider
ationicouldhardlyblamequpiterforhisopinionrespectingit
```


Shoring up monoalphabetic ciphers

- Improved resistance to frequency analysis:
- Insert nulls, symbols that represent nothing
- e.g. cipher alphabet 1-99, 73 numbers represent nulls
- Mespall thangs on pirpus
- Screws up frequency, humans can correct
- Use code words
- Need to exchange large dictionary of codes
- Capture of codebook destroys security
- Homophonic substitution
- Multiple cipher symbols per plaintext symbol
- Nomenclature
- Small list of words/syllables
- Cipher alphabet with homophones

Homophonic substitution

- Improved resistance to frequency analysis:
- Homophonic substitution
- Plaintext symbol, set of cipher symbols
- Set size proportional to frequency in the language

a	b	C	d	e	f	g	h	i	j	k	I	m	n	0	p	q	r	S	t	U	V	W	X	Y	Z
09	48	13	01	14	10	06	23	32	15	04	26	22	18	00	38	94	29	11	17	08	34	60	28	21	02
12	81	41	03	16	31	25	39	70			37	27	58	05	95		35	19	20	61		89		52	
33		62	45	24			50	73			51		59	07			40	36	30	63					
47			79	44			56	83			84		66	54			42	76	43						
53				46			65	88					71	72			77	86	49						
67				55			68	93					91	90			80	96	69						
78				57										99					75						
92				64															85						
				74															97						
				82																					
				87																					
				98																					

Mary Queen of Scots

- Babington Plot
- Mary imprisoned for 18 years
- Gilbert Gifford double agent "recruited" to communicate with Mary
- Detoured letters via Walsingham
- Anthony Babington and company
- Rescue Mary
- Assassinate Elizabeth
- Wanted blessing of Mary

Elizabeth I

Mary Queen of Scots

Francis Walsingham

Mary's nomenclature

Character	Meaning	Charscter	Meaning\|	Character	Meaning
0	A	7	x	ff.r., \sim, α.	Nulles
\ddagger	B	8	\%	σ	Doubtieth
1	c	9	z	2	And
+	D	3	For	d	Wyt
a	E	4	With	ρ	Send
\square	F	4	That	δ^{ρ}	tre
θ	${ }^{\text {G }}$	4	17	\pm	Receave
∞	H	3	But	T	Bearer
1	1	\bigcirc	Where	1	I
む	K	n	As	\vdash	Pray
x	1	M	or	-	You
/1	M	8	The	$Z 2$	M He
ϕ	N	\times	From	7	Your Name
∇	-	50	By	SS	Myne
5	P	8	So	7	What
m	Q	\times	Not	6	is
f	R	H	When	\square	5 Say
\triangle	s	H	There	(n	Me
ε	T	6	This	(m)	My
c	U	x	${ }^{\text {In }}$	も	Which

http://www.purplehell.com/riddletools/maryqos.htm

The plot

- Babington plot
- Gifford delivers message from Mary to Babington
- Babington replies with outline of plot

> "Myself with ten gentlemen and a hundred of our followers will undertake the delivery of your royal person from the hands of your enemies. For the dispatch of the usurper, from the obedience of whom we are by the excommunication of her made free, there be six noble gentlemen, all my private friends, who for the zeal they bear to the Catholic cause and your Majesty's service will undertake that tragical execution"

- Mary replies endorsing plan
- Walsingham forges postscript to Mary's letter asking Babington to name names

Polyalphabetic cipher

- Monoalphabetic cipher
- Single set of substitutions for all letters

a	b	c	d	e	f	g	h	i	j	k	I	m	n	o	p	q	r	s	t	u	v	w	x	y
U	G	L	Y	B	A	C	K	S	W	N	D	E	F	H	I	J	M	O	P	Q	R	T	V	X

- Polyalphabetic cipher
- Multiple sets of substitutions
- Switch between them during encryption
- 1460s, Leon Alberti hits on idea of using two or more sets

| a | b | c | d | e | f | g | h | i | j | k | I | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| :---: |
| U | G | L | Y | B | A | C | K | S | W | N | D | E | F | H | I | J | M | O | P | Q | R | T | V | X | Z |
| T | H | E | Q | U | I | C | K | B | R | O | W | N | F | X | J | M | P | S | V | L | A | Z | Y | D | G |

Polyalphabetic cipher

- 1586, Vigenère cipher, "Le Chiffre Indéchiffrable"
- Each letter Caesar shifted, but change based on keyword

		A	B	C	D E	E	F	G	H			K L	L M	M N	N	0		Q	R	S	T	U	V W		X	
A		A	B	C	D	E	F	G	H	I	J	K	L M	M	N	0	P	Q	R	S	T	U	V W	X	Y	Z
B		3	C	D	E F	F	G H	H	1	J	K	L M	M	N	O P		Q	R	S	T	U	W	W	X Y	Z	A
C		C	D	E	G	G	H	1	J	K	L	M	N	0	P	Q	R	S	T U	U	V	W	X Y	Z	A	B
D		D	E	F	H	H	1		K	L	M	N	O	P	Q		S	T U	U V	V	W	X Y	Y Z	A	B	C
E		E	F	,	H	1				M	N	O	P	Q R	R	S	T	U	V V	W	X	Y Z	Z A	A	C	D
F		F	G	H	1	J K	K L	L M	M	N	O	P	Q	R S	S		U	W	W	X	Y	Z A	A B			E
G		G	H	1	K	K	L M	M	N	0	P	Q	R	S T	T U	U	V	W X	X Y	Y	Z	A B	B C	D	E	F
H		H	1	J K	K L	L M	M	N	0	P	Q	R	S	T U	U V		W		Y Z	Z	A	B	C D	E	F	
\|		1	J	K	M	M	N	O		Q	R	S	T U	U V		W	X	Y Z	Z A	A	B	C	D E	F	G	H
		J K	K	L M	N		O	P		R	S	T U	U	V W	W		Y	Z A	A	B	C	D E	E F	G	H	
K		K	L	M	N	O	P	Q	R	S	T	U	V	W	X		Z	A	B	C	D	E F	G	H	1	J
L		L M	M	N	0 P	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	,	G H	H	J	K
M		M	N	O	P Q	Q	R	S T	T	U	V	W	X	Y Z	Z	A	B	C	D	E	F	G H	H	J	K	
N		N	0	P	Q	R	S	T U		V	W	X	Y	Z	A	B	C	D	E	F	G	H	1 J	K	L	M
0		0	P	Q	S	S	T U	U V		W	X	Y	Z	A			D	E	F	G	H	$1 J$	K	L	M	N
		P	Q	R	S	T				\times		Z					E	F	G	H	1	J K	L	M	N	O
Q		,	R	S	U					Y	Z	A	B				F	G	H	1	J K	K L	M	N	0	
R		R	S	T U	U					Z	A	B	C				G	H	1	J	K	L M	M N	O	P	Q
S		S	T	U	V	W	X	Y Z		A	B	C	D	E F			H	1	J K	K	L	M N	0	P	Q	R
T		T	U	V	W	X	Y Z	Z A	A	B	C	D	E	F	G H	H	1	J	K L	L	M N	N	$\bigcirc \mathrm{P}$	Q	R	S
U			V	W	X Y	Y Z	Z	A	B	C	D	E	F	G H	H	1	J	K L	L M	M	N	0 P	Q	R	S	
\checkmark			W	X	Y Z	Z	A	B	c	D	E	F	G	H	1		K	L	M	N	O	P Q	Q R	S	T	U
			X	Y	Z A	A	B	C D		E	F	G	H	1 J			L	M N	N	0	P	Q	S	T	U	
X		X Y	Y	Z	A	B	C	D	E	F	G	H	1		K L		M	N	0	P	Q	R S	S 1			
Y			Z	A	B	C								K			N	O	P	Q	R	S T	U			
			A																		S					

Blaise de Vigenère

Plaintext attackatdawn

Key
LEMONLEMONLE
Ciphertext LXFOPVEFRNHR

Breaking the Vigenère Cipher

- Vigenère cipher
- Much better at hiding letter frequency information
- But key repeats:
- If you know key length, just an interwoven set of Caeser ciphers

Key:	ABCDABCDABCDABCDABCDABCDABCD
Plaintext:	CRYPTOISSHORTFORCRYPTOGRAPHY
Ciphertext:	CSASTPKVSIQUTGQUCSASTPIUAQJB

- Distance between repeats $=16$
- Suggests key length if $16,8,4,2$, or 1
- Find additional repeats to narrow down lengths
- Frequency analyze each interwoven set

Charles Babbage

WWI: Zimmermann Telegram

- 1915, U-boat sinks Lusitania
- 128 US Civilians
- Promises to surface first
- 1916, new Foreign Minister
- Arthur Zimmermann
- 1917, unrestricted submarine warfare
- Zimmermann hatches plan
- Keep American busy at home
- Persuade Mexico to invade US
- Get Mexico to persuade Japan to attack US

4.arton, state Deph.

By Muchsidifflizimit FROM and from London F 5747. Finect 27, "We intend to begin on the first of February unrestricted eubmarine wariare. We shall endesvo In spite of this to keep the United States of merica neutrel. In the event of this not succeeding, we make Mexico a propossl of alliance on the following basis: make war together, make peace together, generous Ifnancial support and an understanding on our part that Mexico is to reconquer the loet territory in Texas, New Mexico, and arizons. The settlement in detail is left to you. You will inform the President of the above most secretly as soon as the outbreak of war with the United States of America is certain and add the suggestion that he should, on his own initiative, mente Japan to immediste adherence and at the aame time mediate between Japan and ourselves. Please call the President's attention to the fact that the ruthless employment of our submarines now offers the prospect of compelling England in a few months to make pesce." siened, LIt "ERadiri.

Unbreakable encryption

- 1882, One-time pad
- Use a key as long as the message
- Choose the key (truly) randomly
- Only use the key once and only once
- Provably secure

Breaking one-time pads?

- Try all possible keys
- 26^length = big
- Generates all possible sequences

Some

Unbreakable encryption

- Problems with one-time pads:
- Must distribute pads securely
- Must use truly random numbers
- Not pseudo-random
- Not random typing on a keyboard
- Must never reuse the same key

> "As a practical person, I've observed that one-time pads are theoretically unbreakable, but practically very weak. By contrast, conventional ciphers are theoretically breakable, but practically strong." -Steve Bellovin

Mechanization of secret writing

- Pencil and paper
- Security limited by what humans can do quickly and accurately in the heat of battle
- Enter the machine

Thomas Jefferson's wheel cipher

Captain Midnight's Code-o-Graph

Enigma machine

- Enigma cipher machine
- 1918, patented by German engineer Arthur Scherbius

- A electrical/mechanical implementation of a polyalphabetic substitution cipher

追|lile

Enigma rotors

- Rotor (wheel, drum)
- An monoalphabetic substitution cipher implemented via a complex wiring pattern
- Set to one of 26 initial positions
- Geared to rotate after each letter
- Rotor set
- 3 rotors in 3 !=6 possible orders
- Eventually set increased to 3 out of 5
- Navy used even more

- Possible keys:
- $3!* 26^{3}=6 * 17,576=105,456$

Enigma plugboard

- Plugboard
- Operate inserts cables to swap letters
- Initially 6 cables
- Swaps 6 pairs of letters
- Leaves 14 letters unswapped
- Possible configurations:
- 100,391,791,500
- Total keys:

$-17,576$ * 6 * 100,391,791,500 $\approx 10,000,000,000,000,000$

Enigma

- Enigma machine
- Sales initially slow
- 1923, Germans find out about failures of communication security in WWI
- 1925, Scherbius starts mass production
- German military eventually buys 30,000 Enigma machines
- 1929, Scherbius dies in carriage accident

Cracking the Enigma

- Step 1: Espionage
- Disgruntled Schmidt meets with French secret agent
- Sells Enigma user manuals
- Allows replica to be constructed
- Also codebook and daily key scheme
- French just give intelligence to Poles
"It is assumed in judging the security of the cryptosystem that the enemy has at his
 disposition the machine."
-German memorandum

Cracking the Enigma

- Step 2: Poles identify weakness
- German's had day code specifying:
- Configuration of rotors
- Settings of rotors
- Settings of plugboard
- Unique key per message:
- Send 3 letters, encrypted with day key
- Letters specify new setting of rotors
- New rotors setting used for message payload

Marian Rejewski

Repeat the 3 initial letters twice

Repetition is the enemy of security!

Cracking the Enigma

- Find patterns in first 6 letters
$-1^{\text {st }}-4^{\text {th }}, 2^{\text {rd }}-5^{\text {th }}$, and $3^{\text {rd }}-6^{\text {th }}$ are ciphers of same letter

Message	1st	2nd	3rd	4th	5th	6th
1	L	O	K	R	G	M
2	M	V	T	X	Z	E
3	J	K	T	M	P	E
4	D	V	Y	P	Z	X
		P				

$1^{\text {st }}$	A	B	C	D	E	F		G	H	1		J	K	L		M	N	0	P		Q	R	S			U	V	W	X	Y	z
$4^{\text {th }}$				P								M		R	X	X															

Cracking the Enigma

- Given enough messages:
- Fill in full table of relations between 3 pairs

Message	1st	2nd	3rd	4th	5th	6th
1	L	0	K	R	G	M
2	M	V	T	X	Z	E
3	J	K	T	M	P	E
4	D	V	Y	P	Z	X
$\uparrow \uparrow \uparrow \uparrow$						

| 1 $^{\text {st }}$ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y |
| :--- | Z

Fingerprinting a day key

- Find chains
- Found to change every day depending on day key

$1^{\text {st }}$	A	B	C		D	E	F	G	H	1	J	K	K	L	M	N	0	P	Q	R	S	T	U	v	W	x	Y	z
$4^{\text {th }}$	F	Q	H		P	L	W	0	G	B	M	M	V	R	X	U	Y	C	Z	1	T	N	J	E	A	S	D	

$\mathrm{A} \rightarrow \mathrm{F} \rightarrow \mathrm{W} \rightarrow \mathrm{A}$	3 links
$\mathrm{B} \rightarrow \mathrm{Q} \rightarrow \mathrm{Z} \rightarrow \mathrm{K} \rightarrow \mathrm{V} \rightarrow \mathrm{E} \rightarrow \mathrm{L} \rightarrow \mathrm{R} \rightarrow \mathrm{I} \rightarrow \mathrm{B}$	9 links
$\mathrm{C} \rightarrow \mathrm{H} \rightarrow \mathrm{G} \rightarrow \mathrm{O} \rightarrow \mathrm{Y} \rightarrow \mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{C}$	7 links
$\mathrm{J} \rightarrow \mathrm{M} \rightarrow \mathrm{X} \rightarrow \mathrm{S} \rightarrow \mathrm{T} \rightarrow \mathrm{N} \rightarrow \mathrm{U} \rightarrow \mathrm{J}$	7 links

- Also for $2^{\text {nd }}-5^{\text {th }}$ and $3^{\text {rd }}-6^{\text {th }}$ letter pairs
- Number of chains and length is independent of plugboard
- Catalog each of 105,456 rotors settings using replica

WWII

- 1938, Germany increases Enigma security
- Add two additional rotors, $\mathrm{C}(5,3)=60$
- 10 plugboard cables instead of 6
- Poles couldn't build big enough "bombes" to break
- Poles hand over research to British/French

US Navy bombe

Bletchley Park bombe

Bletchley Park

- Government Code and Cypher School
- Height of WWII, 9000 people
- Battled against improvements to Enigma
- May 1, 1940 Germans stop repetition of message key
- Turing had already developed technique + machine to crack using "crib" instead of repetition of key

Cribs

- Cribs
- Some plaintext you think is in the ciphertext
- Ideally also the location
- e.g. Germans usually broadcast weather report at 6am
- "wetter" somewhere at start of message
- German Navy had strongest crypto
- 3 rotors out of 8
- Reflector with 26 orientations
- Avoided stereotypical messages
- Allies

- Mine areas to generate messages with known grid reference
- Stole code books

Summary

- History of Cryptography
- Substitution ciphers
- Monoalphabetic
- Polyalphabetic
- One-time pads
- Provably unbreakable (if used carefully)
- Cryptography in WWI and WWII
- Zimmerman telegraph
- Enigma

