Scalability of web applications

e Copyright © 2011

e Keith Vertanen

CSCl 470: Web Science

Overview

Scalability questions, what's important?

High availability vs. load balancing

Approaches to scaling

— Performance tuning, horizontal, vertical scaling
Multiple web servers

— DNS based sharing, hardware/software load balancing
State management

Database scaling

— Replication

— Splitting things up

Scalability related questions

Where is your session state being stored? Why?
How are you generating dynamic content? Why?
Are you regenerating things that could be cached?
What is being stored in the database? Why?

Could you be lazier?

— Do you need exact answers? e.g. page 1/2063
— Queue up work if it doesn't need to be done right now

* e.g. Do the user really need that video thumbnail right now?
What do you care about?

— Time to market, money, user experience, uptime, power
efficiency, bug density, ...

High availability / load balancing

* High availability
— Carrying on running despite failure of components

— May involve load-balancing, but not necessarily
* e.g. Hot/warm standby that doesn't do anything until primary fails

— Also allow easier updating of components

* e.g. Avoid maintenance windows in the middle of the night

* Load balancing
— Effectively combining resources from multiple systems
— Send request to somebody else if a certain system fails

— May provide high availability, but not necessarily
* e.g. Adding a single-point of failure load balancing appliance

Availability 9s

90%, "one nine" 36.5 days
99%, "two nines" 3.65 days
99.9%, "three nines" 8.76 hours
99.99%, "four nines" 52.56 minutes
99.999%, "five nines", "carrier grade" 5.25 minutes

99.9999%, "six nines" 31.5 seconds

Approaches to scaling

* Make existing infrastructure go further

— Classic performance tuning :

* Find the bottleneck
* Make faster if you can
* Find the new bottleneck, repeat

— How are you generating dynamic content? Why?
— Where is your session state being stored? Why?
— What is being stored in the database? Why?

— Canyou be lazier?
* Do you need exact answers? e.g. page 1/2063

* Add work to a queue if it doesn't need to be done right now
— e.g. Do you need that video thumbnail before proceeding?

Approaches to scaling

e Vertical scaling (scale up)

— Buy more memory, faster CPU, more CPUs, SSD disks
— Quick fix, use existing software/network architecture

— But there is a limit, plus price premium for high end kit

ABMX server, 1u Oracle Exadata X2-8, 42u
1 core @3.1 Ghz, 1GB memory, 80GB disk 160 cores @ 2.4Ghz, 4TB memory

S397 14 storage servers, 168 cores, 336TB
1.5M database I/0 ops/sec
$1,650,000

Approaches to scaling

* Horizontal scaling (scale out)
— Buy more servers

— Well understood for many parts
* Application servers (e.g. web servers)
* But may require software and/or network changes

— Not so easy for other parts
e Databases

s Oy

I . iy
http://www.flickr.com/photos/intelfreepress/6722296265/

8

One web site: many servers

* How does the user arrive at a particular server?
— Does the session need to "stick" to same web server?

* Very important depending on how you manage your state

— What happens if web server crashes?
— User would prefer geographically close server

Browser A Browser B

Web 1 Web 2 Web 3

Round robin DNS

e Round robin DNS

— Multiple IP addresses assigned to a single domain name
— Client's networking stack chooses which to connect to

= Queries
= cnn.com: type A, class IN
Name: cnn.com
Type: A (Host address)
Class: IN (0x0001)
= Answers
cnn.com: type A, class IN, addr 157.166.226.25
Browser A Browser B # cnn.com: type A, class IN, addr 157.166.226.26
cnn.com: type A, class IN, addr 157.166.255.18

Web 1 Web 2 Web 3
157.166.226.25 157.166.226.26 157.166.255.18

10

Round robin DNS

e Round robin DNS

— Simple and cheap to implement

* No specialized hardware, using existing DNS infrastructure

— But DNS has not visibility into actual load on servers
* Or whether a server's hard drive has crashed

Browser A Browser B
Web 1 Web 2 Web 3
157.166.226.25 157.166.226.26 157.166.255.18

Anycast + DNS

* Getting users to a closer server

* Multiple clusters
— Each cluster has different pool of IP addresses

— Place a DNS server next to each cluster

* Each has same IP address via IP Anycast
* DNS gives out IP addresses of servers in its cluster

— Anycast routes client to "closest" DNS server

e That DNS servers routes client to "closest" server farm

Load balancers

* Load balancers
— Hardware or software (e.g. mod_proxy_ balancer, Varnish)

— Like a NAT device in reverse
* People hit a single public IP to get to multiple private IP addresses
— Introduces a new single point of failure

e But can introduce a backup balancer
* Monitor each other via a heartbeat

— How to distribute load?

AAA K

Barracuda Load Balancer B

9 He

‘ 6 L IPS][Senice Monitor J[High Availability][Load Balancer Logic Algorithrm] el
i

Intemet

Servers

Backup Barmracuda Load Balancer

13

Load balancer, some features

Session persistence
— Getting user back to same server (e.g. via cookie/client IP)

Asymmetric load
— Some servers can take more load than others

SSL offload

— Load balancer terminates the SSL connection

HTTP compression

— Reduce bandwidth using gzip compression on traffic

Caching content

Intrusion prevention, DDoS protection

Software load balancer

 Apache server running mod_proxy_balancer
— One server answers user requests
— Distributes to two or more other servers

<Proxy balancer://mycluster>
BalancerMember http://192.168.1.50:80
BalancerMember http://192.168.1.51:80
</Proxy>

ProxyPass /test balancer://mycluster

Header add Set-Cookie "ROUTEID=.%

{BALANCER WORKER ROUTE}e; path=/"
env=BALANCER ROUTE CHANGED

<Proxy balancer://mycluster>

BalancerMember http://192.168.1.50:80 route=1
BalancerMember http://192.168.1.51:80 route=2
ProxySet stickysession=ROUTEID

</Proxy>

ProxyPass /test balancer://mycluster

Redundant load balancers

— 102 .168.11.0/24

s ’) ‘
BHLabs1 BHLabs6

Load Balancer 1 Load Balancer 2

BHLabs2 BHLabs3 BHLabs4 BHLabs5
Web Server 1 Web Server2 Web Server 3 Web Server 4

http://www.centric-it.com/2009/04/29/how-to-quickly-setup-a-load-balanced-high-availability-apache-cluster/

16

State management

e HTTP is stateless, but user interactions are stateful
* Store session state somewhere:

— Local to web server
— Centralized across servers
— Stored in the client
— Some combination

* Centralized but cached at closer level(s)

17

Local sessions

e Stored on disk
— PHP temp file somewhere

e Stored in memory

— Faster
— PHP:

e Compile with --with-mm
e session.save_handler=mm in php.ini
e Problems:
— User can't move between servers

— User session won't survive server failure

Centralized sessions

User can move freely between servers
— But always need to pull info from central store

Web servers can crash

— User gets routed to another web server

Shared file system
Store in the database
Store in an in-memory cache

— Memcached

p o - -

No sessions

e Put all information in the cookie
* Browser "nodes" scale with your users

* Concerns:
— User may delete cookie
— User may modify cookie
— Limits on amount of data
— Local to the browser, user may use multiple browsers

20

Database scaling

e Scaling databases is hard

— Distribute among many servers and maintain performance
— DB must obey ACID principles:

e Atomicity - transactions are all or none
* Consistency - transactions go from one valid state to another
* |solation - no transaction can interfere with another one

e Durability - on failure, information must be accurate up to the last
committed transaction

— ACID isn't too hard/expensive on a single machine:

* Shared memory, interthread/interprocess synchronization, shared
file system

e Facilities are fast and reliable

— Distribute over a LAN or WAN, performance problems!

Database replication

 Multimaster replication
— The "holy grail" of distributed databases
— Group of DBs, updates can occur on any DB
— Doing this without loosening ACID, very expensive
* Two-phase commit between all the nodes
 Master-master replication
— For achieving high-availability, not scalability
— Two servers with a low latency connection

 Master-slave replication
— Modification only occur on master
— Changes propagated to slaves

22

Database example

Master-master

Y

— S

{

Core web app [€——| Core |e

DB

e
N

Core
DB

SN~

app

B & - [} I
u Content web

Remote cluster 1

c N e
U e
u Content web

app

Remote cluster 1

23

Other database options

* Horizontal partitioning
— Separate rows onto separate tables
— Spreads read/writes, improve cache locality
e Vertical partitioning
— Split rows into multiple tables with fewer columns
— Lets queries scan less data
* Unless you end up needing to do a join across tables

e Sharding

— Separate rows onto separate databases
e e.g. All customers west of the Mississippi

— Must determine which shard customer belongs to
— Queries/transactions involving multiple shards

Summary

e Scaling web sites
— High availability !=load balancing

— Scale vertically

— Scale horizontally Scalable Internet

* More application servers
* Balanced via DNS/hardware/software
* Session management becomes harder

— Database is usually the big problem

* Possible paper topic:
— Web farms at extreme scale

* "The Datacenter as a Computer", Google

O'REILLY*

25

