Lossless compression I

0010111 Symbol | Probability

bbbaa = 10011001 a 0.2 [0.0, 0.2)
00011001, : 0.3 [6.2, ©.5)

R oot 1 0.1 [0.5, 0.6)
BEe0 3 idorin) 0 0.2 [0.6, 0.8)
p— o a1 [0, 09)

! 0.1 [6.9, 1.0)

CSCl 470: Web Science * Keith Vertanen e Copyright © 2012

Overview

* Flavors of compression
— Static vs. Dynamic vs. Adaptive

* Lempel-Ziv-Welch (LZW) compression PaVeIatat

— Fixed-length codeword
— Variable-length pattern

e Statistical coding

— Arithmetic coding
— Prediction by Partial Match (PPM)

Text Compression

Timothy C. Bell
John . Cleary
Ian H. Witten

Compression models

e Static models
— Predefined mapping for all text, e.g. ASCII, Morse Code
— Not optimal, different texts have different statistics

* Dynamic model
— Generate model based on text
— Requires initial pass before compression can start
— Must transmit the model
— e.g. Huffman coding

* Adaptive model
— More accurate modeling products better compression

— Decoding must start from beginning
— e.g. LZW

LZW

* Lempel-Ziv-Welch compression (LZW)

— Basis for many popular compression formats

— e.g. PNG, 7zip, gzip, jar, PDF, compress, pkzip, GIF, TIFF
* Algorithm basics

— Maintain a table of fixed-length codewords for variable-
length patterns in the input

— Table does not need to be transmitted!
* Built progressively by both compressor and expander

— Table is of finite size
* Holds entry for all single characters in alphabet

* Plus entries for longer substrings encountered

LZW compression example

e Details:
— 7-bit ASCII characters, 8-bit codeword
* Forreal use, 8-bit - ~12-bit codeword
— Store alphabet of 128 characters + 128 longer strings
— Codeword is 2-digit hex value:
* 00-79 =single characters, e.g. 41 =A,52 =R
* 80 =end of file
* 81-FF =longer strings, e.g. 81 = AB, 88 = ABR

— Employs a lookahead character to add codewords

— Find longest string s in table
A a1 that is prefix of unscanned
input
B 42 p. .
— Write codeword of string s
C 43
— Scan one character c ahead
D 44 — Associate next free
codeword with s + ¢
R 52

Initial set of character
codewords

Mappings found during 6
compression

B -

AB 81 — Find longest string s in table
A a1 that is prefix of unscanned
input
B 42 p. .
— Write codeword of string s
C 43
— Scan one character c ahead
D 44 — Associate next free
codeword with s + ¢
R 52

Initial set of character
codewords

Mappings found during 7
compression

A B

)

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42) .
— Write codeword of string s
C 43
— Scan one character c ahead
D 44 — Associate next free
codeword with s + ¢
R 52

Initial set of character
codewords

Mappings found during 8
compression

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s
C 43
— Scan one character c ahead
D 44 — Associate next free
codeword with s + ¢
R 52

Initial set of character
codewords

Mappings found during 9
compression

AB 81 — Find longest string s in table
A 41 BR 22 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s
C 43
A e — Scan one character c ahead
D 44 — Associate next free
codeword with s + ¢
R 52

Initial set of character
codewords

Mappings found during 10
compression

41 42 52 41 43 41 44

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s

C 43

AC 84 — Scan one character c ahead
D 44 CA 85 — Associate next free

AD 86 codeword with s + ¢
R 52 DA 87

Initial set of character
codewords

Mappings found during 11
compression

41 42 52 41 43 41 44 81

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s

C 43

AC 84 — Scan one character c ahead
D 44 CA 85 — Associate next free

AD 86 codeword with s + ¢
R 52 DA 87

ABR 88

Initial set of character
codewords

Mappings found during 12
compression

41 42 52 41 43 41 44 81 83

AB 81 — Find longest string s in table

A a1 BR 32 that is prefix of unscanned
input

B 42 RA 83) .

— Write codeword of string s
¢ 43 AC 84 — Scan one character c ahead
D 44 CA 85 — Associate next free

AD 86 codeword with s + ¢
R 52 DA 87
ABR 88
Initial set of character RAB 89
codewords
Mappings found during 13

compression

41 42 52 41 43 41 44 81 83 82

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s
C 43
AC 84 — Scan one character c ahead
D 44 CA 85 — Associate next free
AD 86 codeword with s + ¢
R 52 DA 87
ABR 88
Initial set of character RAB 89
codewords
BRA 8A
Mappings found during 14

compression

B R A C A D AB RA BR ABR

41 42 52 41 43 41 44 81 83 82 88

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s
C 43
AC 84 — Scan one character c ahead
D 44 CA 85 — Associate next free
AD 86 codeword with s + ¢
R 52 DA 87
ABR 88
Initial set of character RAB 89
codewords
BRA 8A
ABRA 8B
Mappings found during 15

compression

B R A C A D AB RA BR ABR

41 42 52 41 43 41 44 81 83 82 88

AB 81 — Find longest string s in table
A a1 BR 32 that is prefix of unscanned
input
B 42 RA 83) .
— Write codeword of string s
C 43
AC 84 — Scan one character c ahead
D 44 CA 85 — Associate next free
AD 86 codeword with s + ¢
R 52 DA 87
ABR 88
Initial set of character RAB 89
codewords
BRA 8A
ABRA 8B
Mappings found during 16

compression

Compression data structure

 LZW compression uses two table operations:
— Find longest-prefix match from current input position
— Add an entry with character added to longest match

e Trie data structure

— Linked tree structure * Compressing

— Find longest string s in table
that is prefix of unscanned
input

— Path in tree defines string

— Write codeword of string s

— Scan one character c ahead

— Associate next free
codeword with s + ¢

17

o
g coseword R sving | coseword [g | codewerd
AB 81 AD 86

A 41 BR 82 DA 87
B 42 RA 83 ABR 88
C 43 AC 84 RAB 89

CA 85 BRA 8A

18

private static final int R = 256; // number of input chars
private static final int L = 4096; // number of codewords = 2”W
private static final int W = 12; // codeword width

public static void compress()

{

String input = BinaryStdIn.readString(); // read input as string

TST<Integer> st = new TST<Integer>(); // trie data structure

for (int i = @; i < R; i++) // codewords for single chars
st.put("" + (char) i, i);

int code = R+1; // R is codeword for EOF

while (input.length() > 0)

{
String s = st.longestPrefixOf(input);
BinaryStdOut.write(st.get(s), W); // write W-bit codeword for s
int t = s.length();
if (t < input.length() && code < L)
st.put(input.substring(@, t + 1), code++); // add new codeword
input = input.substring(t);
}
BinaryStdOut.write(R, W); // write last codewonrd

BinaryStdOut.close();

m 41 42 52 41 43 41 44 81 83 82 88 41 80

— Write string for val codeword
A 41 — Read codeword x from input
B 42 — Set s to string for codeword x
C 43 — Set next unassigned
codeword to val + c where c
L 44 is 1t charins
— Setval=s
R 52
val,, = A
X = 42
- S = B
Initial set of character
C = B
codewords
next 4 = 81
val, ., =B
Mappings found during 20

compression

42 52

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

41 43 41 44

AB 81

Mappings found during
compression

81 83 82 88 41 80

* Expansion
— Write string for val codeword
— Read codeword x from input
— Set s to string for codeword x

— Set next unassigned
codeword to val + c where c
is 1stcharin s

— Setval=s
val,, =B
X 52
S = R
C = R
next 4 = 82
val, ., = R

21

42 52 41 43 41 44 81 83 82 88 41 80

AB 31 — Write string for val codeword
A 41 BR 82 — Read codeword x from input
B 42 — Set s to string for codeword x
C 43 — Set next unassigned
codeword to val + c where c
L ot is 1t charins
— Setval=s
R 52
val,, = R
X 41
- S = A
Initial set of character
C = A
codewords
next 4 = 83
val, ., = A
Mappings found during 22

compression

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

AB 81
BR 82
RA 83
Mappings found during

compression

81 83 82 88 41 80

* Expansion
— Write string for val codeword
— Read codeword x from input
— Set s to string for codeword x

— Set next unassigned
codeword to val + c where c
is 1stcharin s

— Setval=s
val,, = A
X = 43
S = C
C = C
next 4 = 84
val, ., = C

23

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

41 43 41 44

AB 81
BR 82
RA 83
AC 84
Mappings found during

compression

81 83 82 88 41 80

* Expansion
— Write string for val codeword
— Read codeword x from input
— Set s to string for codeword x

— Set next unassigned
codeword to val + c where c
is 1stcharin s

— Setval=s
val,, = C
X 41
S = A
C = A
next 4 = 85
val, ., = A

24

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

AB 81
BR 82
RA 83
AC 84
CA 85
Mappings found during

compression

81 83 82 88 41 80

* Expansion
— Write string for val codeword
— Read codeword x from input
— Set s to string for codeword x

— Set next unassigned
codeword to val + c where c
is 1stcharin s

— Setval=s
val,, = A
X = 44
S =D
C =D
next 4 = 86
val, ., =D

25

A B R A C A

m 41 42 52 41 43 41 44 81 83 82 88 41 80

AB 81 — Write string for val codeword
A 41 BR 82 — Read codeword x from input
B 42 RA 33 — Set s to string for codeword x
C 43 AC 34 — Set next unassigned
codeword to val + c where c
= - CA 85 is 1t charins
AD 86 — Setval=s
R 52
val,, =D
X = 81
Initial set of character > = AB
C = A
codewords
next 4 = 87
val, ., = AB
Mappings found during 26

compression

41 42 52 41 43 41 44 81 83 82 88 41 80

A B R A C A D

AB 81 — Write string for val codeword
A 41 BR 82 — Read codeword x from input
B 42 RA 83 — Set s to string for codeword x
C 43 AC 34 — Set next unassigned
codeword to val + c where c
- = CA 85 is 1t charins
AD 86 — Setval=s
R 52 DA 87
val,, = AB
X = 83
Initial set of character > = RA
C = R
codewords
next 4 = 88
val ., = RA
Mappings found during 27

compression

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

41

43 41

44 81

AB 81 — Write string for val codeword
BR 82 — Read codeword x from input
RA 83 — Set s to string for codeword x
AC 34 — Set next unassigned
codeword to val + c where c

£ 85 is 1stcharins
AD 86 — Setval=s
DA 87

val,, = RA
ABR 88 X = 82

S = BR

C =B

next 4 = 89

val, ., = BR
Mappings found during 28

compression

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

41

43 41

44 81

83 82 88 41 80

RA

AB 81 — Write string for val codeword
BR 82 — Read codeword x from input
RA 33 — Set s to string for codeword x
AC 34 — Set next unassigned
codeword to val + c where c

CA 85 is 1t charins
AD 86 — Setval=s
DA 87

val,, = BR
ABR 88 X _ 88
RAB 89 S = (B

C = A

next 4 = 8A

val, ., = RA
Mappings found during 29

compression

41 42 52 41 43 41 44 81 83 82 88 41 80

A B R A C A D AB RA BR

AB 31 — Write string for val codeword
A 41 BR 82 — Read codeword x from input
B 42 RA 33 — Set s to string for codeword x
C 43 AC 34 — Set next unassigned
codeword to val + c where c
- = CA 85 is 1stcharins
AD 86 — Setval=s
R 52 DA 87
val, 4 = ABR
ABR 88 X = 41
Initial set of character RAB 89 > = &
C = A
codewords
BRA 8A next_, = 8B
val ., = RA
Mappings found during 30

compression

41 42 52

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

41

43 41

44 81

83 82 88 41 80

RA BR ABR

ECNEIETEN |- expansion
AB 81 — Write string for val codeword
BR 82 — Read codeword x from input
RA 33 — Set s to string for codeword x
AC 34 — Set next unassigned
codeword to val + c where c
L 85 is 1stcharins
AD 86 — Setval=s
DA 87
val,, = A
ABR 88 X = 80
RAB 89 >)
C =
BRA 8A next 4 =
ABRA 8B Vale, =
Mappings found during 31

compression

41 42 52

A B R

A 41
B 42
C 43
D 44
R 52

Initial set of character
codewords

41

43 41

44 81

83 82 88 41 80

RA BR ABR A

Write string for val codeword
Read codeword x from input
Set s to string for codeword x

Set next unassigned
codeword to val + c where c
is 1stcharin s

Setval =s

AB 81 —
BR 82 —
RA 83 —
AC 84 N
CA 85
AD 86 —
DA 87

val, 4
ABR 88 X
RAB 89 S

C
BRA 8A next, ,ge
ABRA 8B valie,
Mappings found during

compression

32

Expansion data structure

* For a given W-bit codeword, look up string value

A
B
C
D

— An array of size 2W

g covewors [l sing | codeword
v . AB 81

41
42
43
44

52

BR
RA
AC
CA
AD
DA
ABR
RAB
BRA
ABRA

82
83
84
85
86
87
88
89
8A
8B

Expansion

Write string for val codeword
Read codeword x from input
Set s to string for codeword x

Set next unassigned
codeword to val + c where c
is 1stcharin s

Setval =s

33

A tricky case: compression
ABABABA

input B A B A B A

matches

codeword

A 41
B 42
C 43
Initial set of Mappings found during

codewords compression
34

A tricky case: compression
ABABABA

input A B A B A B A

matches A

codeword i

g covewors [g | codeword
AB 81

A 41
B 42
C 43
Initial set of Mappings found during

codewords compression
35

A tricky case: compression
ABABABA

input A B A B A B A
matches A B
codeword i 42

g covewors [g | codeword
AB 81

A 41 BA 82
B 42
C 43
Initial set of Mappings found during

codewords compression
36

A tricky case: compression

ABABABA
input A B A B A B A
matches A B AB
codeword i 42 81

g covewors [g | codeword
AB 81

A 41 BA 82
B 42 ABA 83
C 43
Initial set of Mappings found during

codewords compression
37

A tricky case: compression

ABABABA
input A B A B A B A
matches A B AB ABA
codeword i 42 81 83

g covewors [g | codeword
AB 81

A 41 BA 82
B 42 ABA 83
C 43
Initial set of Mappings found during

codewords compression
38

A tricky case: expansion
ABABABA

421 42 81 8 80

A 41
B 42
C 43
Initial set of Mappings found during

codewords compression
39

A tricky case: expansion
ABABABA

421 42 81 8 80
:

g covewors [g | codeword
AB 81

A 41
B 42
C 43
Initial set of Mappings found during

codewords compression
40

A tricky case: expansion
ABABABA

421 42 81 8 80
. -

g covewors [g | codeword
AB 81

A 41 BA 82
B 42
C 43
Initial set of Mappings found during

codewords compression
41

A tricky case: expansion
ABABABA

41 42 81 83 80
A B AB

We need to
know the first
character of 83
in order to enter

string__| codeword [l string__| codeword [l

table!
AB 81
A 41 BA 82
B 42
C 43
Initial set of Mappings found during

codewords compression

42

LZW decisions

 How big of a symbol table?
— How long is message?
— Whole message similar model?
— Many variations...

 What to do when symbol table fills up?
— Throw away and start over, e.g. GIF
— Throw away when not effective, e.g. Unix compress
— Many variations...

 Why not put longer substrings in symbol table?
— Many variations...

43

LZW variants

* Lempel-Ziv variants

— LZ77, published by Lempel and Ziv in 1977, not patented
* PNG

— LZ78, published by Lempel and Ziv in 1978, patented

— LZW, Welch extension to LZ78, patented (expired in 2003)
* GIF, TIFF, Pkzip

— Deflate = LZ77 variant + Huffman coding
* 7zip, gzip, jar, PDF

O

i\ Burn All GIFs

€ «>CH burnallgifs.org 2l

Burn All
GIFs

Some experiments

e Compressing text to Moby Dick
— Using Java programs for LZW and Huffman

— Different dictionary sizes for LZW or resetting when full
— Compared to zip and gzip

09/30/2011
04/22/2012
04/22/2012

04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012

04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012

1,191,463
485,561
485,790

667,651
597,060
814,578
592,830
682,400

541,261
521,700
503,050
501,193
521,700
514,393
571,548

mobydick.
mobydick.
mobydick.

mobydick.
mobydick.
mobydick.
mobydick.
mobydick.

mobydick.
mobydick.
mobydick.
mobydick.
mobydick.
mobydick.
mobydick.

txt

gz
zip

huff
1zw
huff.lzw
1zw. huff
lzw.reset

1zw14
1zw15
1zwle6
1zwl6
1zw17
1zw18
1zw20

Enter statistical coding...

* Natural language quite predictable
— ~ 1 bit of entropy per symbol

— Huffman coding still requires 1-bit minimum per symbol
 We're forced to use an integral number of bits

— Dictionary-based (LZW and friends)

 Just memorizes sequences

e Statistical coding

— Use long, specific context for prediction
* P(A | The_United_State_of)=?

— Blend knowledge using contexts of different lengths

— Model can update and change as text seen
» Often after every letter!

a; pi log, % li cla;)

a 0.0575 4.1 4 0000

b 0.0128 6.3 6 001000

c 0.0263 52 5 00101

d 0.0285 5.1 5 10000

e 0.0913 3.5 4 1100

f 0.0173 59 6 111000

g 0.0133 6.2 6 001001

h 0.0313 50 5 10001

i 0.0599 4.1 4 1001

j 0.0006 10.7 10 1101000000
k 0.0084 6.9 7 1010000

1 0.0335 4.9 5 11101

m 0.0235 54 6 110101

n 0.0596 4.1 4 0001

o 0.0689 39 4 1011

p 0.0192 57 6 111001

q 0.0008 10,3 9 110100001
r 0.0508 4.3 5 11011

s 0.0567 4.1 4 0011

t 0.0706 3.8 1 1111

u 0.0334 4.9 5 10101

v 0.0069 7.2 8 11010001
w 0.0119 6.4 7 1101001

x 0.0073 7.1 7 1010001

y 0.0164 59 6 101001

z 0.0007 10.4 10 1101000001
—0.1928 24 2 01

MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms.

47

Guess the phrase

c o O

5 UL © 2 _ 0 v.. >0~ £ 35 a

O « b0 wn

A simple unigram model of English

e r e _ | S n o _

! 0.0071063 | 0.0343399
- 0.0000001 m | 0.0247835
. 0.0000384 N 0.0490316

</s> | 0.0368291 o | 0.0762119

<sp> | 0.1653810 p | 0.0134453
a 0.0595248 g 0.0003078
b | 0.0112864 r 0.0408972
c 0.0174441 s 0.0433802
d 0.0282733 t 0.0680194
e 0.0890307 u 0.0273347
f 0.0127512 v | 0.0083669
g 0.0213974 w | 0.0210079
h 0.0403836 X 0.0010829
i 0.0586443 y | 0.0295698
j 0.0018080 z 0.0005395
k 0.0117826

49

From text to a real number

e Arithmetic coding
— Message is represented by a real interval between [0, 1)

— More precise the interval, the more bits it specifies

— e.g.[0.28272722,0.28272724) = "it was the best of times"
* Or any number in that interval, 0.28272723

e Example
— Alphabet=1{a, e, i, 0, u, !}

— Transmission = eaii! Symbol | Probability

a 0.2 [0.0, 0.2)
e 0.3 [0.2, 0.5)
i 0.1 [0.5, 0.6)
0 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
! 0.1 [0.9, 1.0)

50

after
seeing

nothing

=

| S

0.23 4

0.2336 —

—

0.233 -

o
N
8
)
' |

1

1

1

0.23354 -

Transmission = eaii!

.23354,

Bell, Cleary, Witten. Text Compression.

Symbol | Probability
a 0.2

® ®© &© &©®© o

o o o

O 600 OO U1 N

o

ange
[0.0,

.2)
.5)
.6)
.8)
.9)
.0)

PR ®©® ©®© ®© ©®© ©

Note: Encoder/decoder need to agree on symbol to terminate message, here we use !

51

Context

(sequence thus far) Probability of next symbol

P(a)=0.425 P(b)=0.425 P(0)=0.15
b P(a|b)=0.28 P(b|b)=0.57 P(O|b)=0.15
bb P(a|bb)=0.21 P(b|bb)=0.64 P(0|bb)=0.15
bbb P(a|bbb)=0.17 P(b|bbb)=(P(0|bbb) =0.15
bbba P(a|bbba)=0.28 P(b|bbba)=0.57 P(O|bbba)=0.15
E 00000 0000 Figure 6.4. Illustration of the
00001 000 arithmetic coding process as the
: 00010 0001 sequence bbbal is transmitted.
= 00011 00
= 00100
2 0010
= 00101
= 001
a = 00110 -
= 00111
= 01000 4,4,
= 01001
2 010
= 01010
= 01011 o1
= 01100 .o
= 01101
= 011
= 01110 .,
ba =~ 01111 - 10010111
=10000 1000 10011000
= 10001 bbbaa — 10011001
bba =~ 10010 100 — 10011010
bbb —o011 100 bbba - 10011011 44694
- = 10 bbbab =10011100
b = 10100 —10011101
PP bbb bbbb = 10101 1010101 —Sobad 310011110
= 101101011 8 X10011111
BBBT = 10111 110100000
bbOl = 11000
=~ 11001 1100 100111101
bO = 110
= 11010 o,
= 11011 "
= 11100
0 = 11101“10111
= 11110 .,
11111

52

MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms.

Context modeling

* Prediction by Partial Match (PPM)
— Probability of next symbol depends on previous symbol(s)
— Blending strategy for dealing with zero-frequency problem
— Easy to build as adaptive

e Learn from the text as you go
* Not trie to send like Huffman coding

— 1984, but still competitive for text compression
* Various variants, PPM-A/B/C/D/Z/*

* Implemented in 7-zip, open source packages, PPM for XML, PPM
for executables, ...

PPM

* An alphabet A with g symbols

 Order = How many previous symbols to use

— 2 = condition on two previous symbols, P(x, | X, 1, X, ,)

— 1 = condition on one previous symbol, P(x_

— 0 = condition on current symbol, P(x)
— -1 = uniform over the alphabet, P(x,) = 1/q

 For a given order:

| Xn-l)

— Probability of next symbol is based on counting

occurrences seen given prior context

Po(0) =

o (@)
L

0

54

TABLE 6-1 CALCULATION OF BLENDED PROBABILITIES (SIMPLE SCHEME AND ESCAPE METHOD A)
FOR THE MESSAGE “cacbcaabca”

Context Counts Predictions — p, () ¢,(9) Weight | Escape

0 5 a b c d e W, €,
4 abca: 0 — 0 — 0 - 0 - 0 e 0 0 —
3 bca 1 0 0 0 0 0 0 0 0 % %
. L 3 1 1

2 ca: 2 5 1 0 0 - 1 0 0 0 0 3 :
- it} E 2 1 L

1 a: 3 - 1 3 1 - 1 0 0 0 0 - 2
: 5 2 3 s L

. ' i 10 4 10 2 10 . 0 . 0 0 132 T

I I I l 1 l
-1 —| = =l7 =| &% FT|7F. T ~| = 0
e 956 66 296 1 I
Blended probabilities — o e = —

Bell, Cleary, Witten. Text Compression.

P@O)= 3 wopo(®)
0=-]

55

Escape probabilities

 Need weights to blend probabilities
— Compute based on "escape" probability

— Allocate some mass in each model order for when a lower-
order model should make prediction instead
— Method A:
* Add one to the count of characters seen in a context
e e =1/(C,+1)
— Method D:

* u=number of uniqgue characters seen
¢ eo=(U/2)/CO

Lossless compression benchmarks
year |scheme |bits/char

1967 ASCII 7.00
1950 Huffman 4.70
1977 LZ77 3.94
1984 LZMW 3.32
1987 LZH 3.30
1987 move-to-front 3.24
1987 LZB 3.18
1987 gzip 2.71
1988 PPMC 2.48
1994 PPM 2.34
1995 Burrows-Wheeler 2.29
1997 BOA 1.99
1999 RK 1.89

Data compression using Calgary corpus

09/30/2011
04/22/2012
04/22/2012
04/24/2012

04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012

04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012
04/22/2012

04/24/2012

1,191,463
485,561
485,790
371,394

667,651
597,060
814,578
592,830
682,400

541,261
521,700
503,050
501,193
521,700
514,393
571,548

325,378

My benchmark

mobydick.
mobydick.
mobydick.
mobydick.

mobydick.
mobydick.
mobydick.
mobydick.
mobydick.

mobydick.
mobydick.
mobydick.
mobydick.
mobydick.
mobydick.
mobydick.

mobydick.

txt
gz

zip
bz2

huff
1zw

huff.lzw
lzw.huff
lzw.reset

1zwl4
1zwl5
1zwl6
1zwl6
1zwl7
1zw18
1zw20

ppmd

Summary

e Dictionary-based compression
— LZW and variants

— Memorizes sequences in the data

e Statistical coding
— Language model produces probabilities
— Probability sequence defines point on [0, 1)

— Use arithmetic coding to convert to bits
— Prediction by Partial Match (PPM)

