
Recursion

CSCI 136: Fundamentals of Computer Science II • Keith Vertanen • Copyright © 2011

Overview

2

• Recursion

– A method calling itself

– A new way of thinking about a problem
• Divide and conquer

– A powerful programming paradigm

– Related to mathematical induction

• Example applications

– Factorial

– Binary search

– Pretty graphics

– Sorting things

Mathematical induction

• Prove a statement involving an integer N
– Base case: Prove it for small N (usually 0 or 1)

– Induction step:

• Assume true for size N-1

• Prove it is true for size N

• Example:
– Prove T(N) = 1 + 2 + 3 + ... + N = N(N + 1) / 2 for all N

– Base case: T(1) = 1 = 1(1 + 1) / 2

– Induction step:

• Assume true for size N - 1, T(N - 1) = (N - 1)(N) / 2

• T(N) = 1 + 2 + 3 + ... + N-1 + N

 = (N – 1)(N) / 2 + N

 = (N – 1)(N) / 2 + 2N / 2

 = (N + 1)(N) / 2

3

Hello recursion

• Goal: Compute factorial N! = 1 * 2 * 3 ... * N

– Base case: 0! = 1

– Induction step:
• Assume we know (N – 1)!

• Use (N – 1)! to find N!

4

public static long fact(long N)
{
 if (N == 0)
 return 1;
 return fact(N - 1) * N;
}

public static void main(String [] args)
{
 int N = Integer.parseInt(args[0]);
 System.out.println(N + "! = " + fact(N));
}

e.g. 4! = 4 * 3 * 2 * 1 = 24

base case

induction step

Instrumented Factorial

5

public static long fact(long N)
{
 System.out.println("start, fact " + N);
 if (N == 0)
 {
 System.out.println("end base, fact " + N);
 return 1;
 }
 long step = fact(N - 1);
 System.out.println("end, fact " + N);
 return step * N;
} start, fact 4

start, fact 3

start, fact 2

start, fact 1

start, fact 0

end base, fact 0

end, fact 1

end, fact 2

end, fact 3

end, fact 4

4! = 24

5 levels of fact()

Recursion vs. Iterative

• Recursive algorithms also have an iterative version

• Reasons to use recursion:

– Code is more compact and easier to understand

– Easer to reason about correctness

• Reasons not to use recursion:

– If you end up recalculating things repeatedly (stay tuned)

– Processor with very little memory (e.g. 8051 = 128 bytes)
6

public static long fact(long N)
{
 if (N == 0)
 return 1;
 return fact(N - 1) * N;
}

public static long fact(long N)
{
 long result = 1;
 for (int i = 1; i <= N; i++)
 result *= i;
 return result;
}

Recursive algorithm Iterative algorithm

A useful example of recursion

• Binary search

– Given an array of N sorted numbers

– Find out if some number t is in the list

– Do it faster than going linearly through the list, i.e. O(N)

• Basic idea:

– Like playing higher/lower number guessing

7

Me You

I'm thinking of a number between 1 and 100. 50

Higher 75

Lower 63

Higher 69

Higher 72

You got it Wow I'm super smart!

Binary search

• Binary search algorithm

– Find midpoint of sorted array

– Is that element the one you're looking for?
• If yes, you found it!

– If target is < midpoint, search lower half

– If target is > midpoint, search upper half

• Example: Is 5 in the sorted array?

8

1 2 2 5 8 9 14 14 50 88 89

target (value) = 5

low (index) = 0

high (index) = 10

midpoint (index) = (0 + 10) / 2 = 5

Binary search

• Binary search algorithm

– Find midpoint of sorted array

– Is that element the one you're looking for?
• If yes, you found it!

– If target is < midpoint, search lower half

– If target is > midpoint, search upper half

• Example: Is 5 in the sorted array?

9

1 2 2 5 8 9 14 14 50 88 89

target (value) = 5

low (index) = 0

high (index) = 5

midpoint (index) = (0 + 5) / 2 = 2

Binary search

• Binary search algorithm

– Find midpoint of sorted array

– Is that element the one you're looking for?
• If yes, you found it!

– If target is < midpoint, search lower half

– If target is > midpoint, search upper half

• Example: Is 5 in the sorted array?

10

1 2 2 5 8 9 14 14 50 88 89

target (value) = 5

low (index) = 3

high (index) = 4

midpoint (index) = (3 + 4) / 2 = 3

Binary search

• Binary search algorithm

– Find midpoint of sorted array

– Is that element the one you're looking for?
• If yes, you found it!

– If target is < midpoint, search lower half

– If target is > midpoint, search upper half

• Example: Is 5 in the sorted array?

11

1 2 2 5 8 9 14 14 50 88 89

YES. Element at new midpoint is target!

Binary search, recursive algorithm

12

public static boolean binarySearch(int target, int low, int high, int[] d)
{
 int mid = (low + high) / 2;
 System.out.printf("low %d, high %d, mid %d\n", low, high, mid);
 if (d[mid] == target)
 return true;
 if (high < low)
 return false;
 if (d[mid] < target)
 return binarySearch(target, mid + 1, high, d);
 else
 return binarySearch(target, low, mid - 1, d);
}

public static void main(String [] args)
{
 int [] d = {1, 2, 2, 5, 8, 9, 14, 14, 50, 88, 89};
 int target = Integer.parseInt(args[0]);
 System.out.println("found " + target + "? " +
 binarySearch(target, 0, d.length - 1, d));
}

Things to avoid

• Missing base case

• No convergence guarantee

• Both result in infinite recursion = stack overflow

13

public static long fact(long N)
{
 return fact(N - 1) * N;
}

public static double badIdea(int N)
{
 if (N == 1)
 return 1.0;
 return badIdea(1 + N/2) + 1.0/N;
}

% java Factorial 5

Exception in thread "main"

java.lang.StackOverflowError

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 at Factorial.fact(Factorial.java:8)

 ...

14

http://xkcd.com/244/

http://xkcd.com/244/
http://xkcd.com/244/

Sometimes we don't know...

• Collatz sequence

– If N = 1, stop

– If N is even, divide by 2

– If N is odd, multiply by 3 and add 1

– e.g. 24 12 6 3 10 5 16 8 4 2 1

– No one knows if this terminates for all N!

15

public static void collatz(long N)
{
 System.out.print(N + " ");
 if (N == 1)
 return;
 if (N % 2 == 0)
 collatz(N / 2);
 else
 collatz(3 * N + 1);
}

16

Recursive graphics

17

18

H-tree

• H-tree of order N

– Draw an H

– Recursively draw 4 H-trees
• One at each "tip" of the original H, half the size

• Stop once N = 0

19

size

si
ze

N N - 1 N - 2

Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, …

20

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2

public static long fib(long n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;
 return fib(n - 1) + fib(n -2);
}

Natural fit for recursion?

Trouble in recursion city…

21

N time, fib(N)

10 0.000

20 0.002

30 0.011

40 0.661

41 1.080

42 1.748

43 2.814

44 4.531

45 7.371

46 11.860

47 19.295

48 31.319

49 50.668

50 81.542

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

Bad news bears.
Order of growth:
Exponential!

Efficient Fibonacci version

• Remember last two numbers

– Trade a (very) little amount of memory for a lot of time

22

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Efficient Fibonacci version

• Remember last two numbers

– Use Fn-2 and Fn-1 to get Fn

23

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Efficient Fibonacci version

• Remember last two numbers

– Use Fn-2 and Fn-1 to get Fn

24

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Efficient Fibonacci version

• Remember last two numbers

– Use Fn-2 and Fn-1 to get Fn

25

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

public static long fibFast(int n)
{
 long n2 = 0;
 long n1 = 1;
 if (n == 0)
 return 0;
 for (int i = 1; i < n; i++)
 {
 long n0 = n1 + n2;
 n2 = n1;
 n1 = n0;
 }
 return n1;
}

N time, fib(N)

50 0.001

100 0.001

200 0.001

400 0.001

10,000,000 0.010

20,000,000 0.016

40,000,000 0.028

80,000,000 0.051

160,000,000 0.096

Summary

• Recursion

– A method calling itself
• Sometimes just once, e.g. binary search

• Sometimes multiple times, e.g. H-tree

– All good recursion must come to an end
• Sooner or later method must NOT call itself

recursively

– A powerful tool in computer science
• Allows writing elegant and easy to

understand algorithms

• (Once you get your head around it)

 26

http://www.flickr.com/photos/zeusandhera/2496831822/

http://www.flickr.com/photos/zeusandhera/2496831822/

