Recursion

Ay
A ﬁ‘?}%
*‘I-..eﬁa

An

GO »gle recursion

Search
Everything Did you mean: recursion
Images . - . :
Recursion - Wikipedia, the free encyclopedia

Maps en.wikipedia.org/wiki/Recursion

i Recursion is the process of repeating items in a self-similar way. For instance, when the
Videos surfaces of two mirrors are exactly parallel with each other the nested ...
News “+ Formal definitions of recursion - Recursion in language

CSCl 136: Fundamentals of Computer Science Il ¢ Keith Vertanen ¢ Copyright © 2011

Overview

* Recursion
— A method calling itself
— A new way of thinking about a problem

e Divide and conquer

— A powerful programming paradigm

— Related to mathematical induction
 Example applications

— Factorial

— Binary search

— Pretty graphics

— Sorting things

Mathematical induction

* Prove a statement involving an integer N
— Base case: Prove it for small N (usually 0 or 1)

— Induction step:
e Assume true for size N-1
* Proveitis true for size N

 Example:
— Prove T(N)=1+2+3+..+N=N(N+1)/2forallN
— Basecase:T(1)=1=1(1+1)/2
— Induction step:
* Assume true forsize N-1, T(N-1)=(N-1)(N) /2
e TIN)=1+2+3+..+N-1+N
=(N-1)(N)/2+N
=(N=1)(N)/2+2N /2
=(N+1)(N)/2

Hello recursion

 Goal: Compute factorialNI=1*2*3 ... *N

— Base case: 0l =1

eg. 41=4*3%2%1=24

— Induction step:

e Assume we know (N —1)!
 Use (N—1)!to find N!

public static long fact(long N)

if (N == @)<7 - phase case

}

public static void main(String [] args)

{
int N = Integer.parseInt(args[0]);
System.out.println(N + "! = " + fact(N));

}

Instrumented Factorial

public static long fact(long N)

{

System.out.println("start, fact " + N);

if (N == 0)

{
System.out.println("end base, fact " + N);
return 1;

}

long step = fact(N - 1);

System.out.println("end, fact " + N);

return step * N;

start, fact

start, fact
start, fact
start, fact
start, fact O
end base, fact O
end, fact 1

end, fact 2

end, fact 3

end, fact 4

41 = 24

N W S

= 5 |evels of fact()

Recursion vs. lterative

e Recursive algorithms also have an iterative version

public static long fact(long N)
{
if (N == 0)
return 1;
return fact(N - 1) * N;
}

public static long fact(long N)
{
long result = 1;
for (int i = 1; i <= N; i++)
result *= i;
return result;

}

Recursive algorithm

Reasons to use recursion:

Iterative algorithm

— Code is more compact and easier to understand

— Easer to reason about correctness

Reasons not to use recursion:
— If you end up recalculating things repeatedly (stay tuned)

— Processor with very little memory (e.g. 8051 = 128 bytes)

A useful example of recursion

Binary search

— Given an array of N sorted numbers

— Find out if some number tis in the list

— Do it faster than going linearly through the list, i.e. O(N)
Basic idea:

— Like playing higher/lower number guessing

I'm thinking of a number between 1 and 100. 50

Higher 75
Lower 63
Higher 69
Higher 72

You got it Wow I'm super smart!

Binary search

* Binary search algorithm
— Find midpoint of sorted array
— |Is that element the one you're looking for?

 If yes, you found it!
— If target is < midpoint, search lower half

— If target is > midpoint, search upper half

e Example: Is 5in the sorted array?

12258@14145088

89

target (value) = 5
low (index) = 0
high (index) = 10

I
ol

midpoint (index) = (0 + 10) / 2

Binary search

* Binary search algorithm
— Find midpoint of sorted array
— |Is that element the one you're looking for?

 If yes, you found it!
— If target is < midpoint, search lower half

— If target is > midpoint, search upper half

e Example: Is 5in the sorted array?

12@58914145088

target (value) = 5
low (index) = 0
= 5

(

high (index)
midpoint (index) =

89

Binary search

* Binary search algorithm
— Find midpoint of sorted array
— |Is that element the one you're looking for?

 If yes, you found it!
— If target is < midpoint, search lower half

— If target is > midpoint, search upper half

e Example: Is 5in the sorted array?

1 2 2 (:::) 8 9 14 | 14 50 | 88

target (value) = 5
low (index) = 3
= 4

(

high (index)
midpoint (index) =

89

10

Binary search

* Binary search algorithm

— Find midpoint of sorted array

— |Is that element the one you're looking for?
 If yes, you found it!

— If target is < midpoint, search lower half

— If target is > midpoint, search upper half

e Example: Is 5in the sorted array?

YES.

2 2 (:::) 8 9 14 | 14 50 88

Element at new midpoint is target!

89

11

Binary search, recursive algorithm

public static boolean binarySearch(int target, int low, int high, int[] d)

{

}

int mid = (low + high) / 2;
System.out.printf("low %d, high %d, mid %d\n", low, high, mid);
if (d[mid] == target)
return true;
if (high < low)
return false;
if (d[mid] < target)
return binarySearch(target, mid + 1, high, d);
else
return binarySearch(target, low, mid - 1, d);

public static void main(String [] args)

{

int [J]d ={1, 2, 2, 5, 8, 9, 14, 14, 50, 88, 89};

int target = Integer.parseInt(args[0]);

System.out.println("found " + target + "? " +
binarySearch(target, 0, d.length - 1, d));

12

Things to avoid

* Missing base case

public static long fact(long N)

{
return fact(N - 1) * N;

[o)

* No convergence guarantee

public static double badIdea(int N)
{
if (N == 1)
return 1.0;
return badIdea(l + N/2) + 1.0/N;

} % java Factorial 5
Exception in thread "main"
java.lang.StackOverflowError

at
at
at
at
at
at
at
at
at

Factorial.
Factorial.
Factorial.
Factorial.
Factorial.
Factorial.
Factorial.
Factorial.
Factorial.

fact (Factorial
fact (Factorial
fact (Factorial
fact (Factorial
fact (Factorial
fact (Factorial
fact (Factorial
fact (Factorial
fact (Factorial

~ o~ o~ o~ o~ o~ o~ o~

e Both result in infinite recursion = stack overflow

.Java:
.Java:
.Java:
.Java:
.Jjava:
.Jjava:
.Jjava:
.Jjava:
.Jjava:

0O 00 0O GO GO O O O O

13

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

m

http://xkcd.com/244/

14

http://xkcd.com/244/
http://xkcd.com/244/

Sometimes we don't know...

* Collatz sequence
— IfN=1, stop
— If N is even, divide by 2
— If N is odd, multiply by 3 and add 1
—e.8.241263105168421
— No one knows if this terminates for all N!

public static void collatz(long N)
{
System.out.print(N + " ");
if (N == 1)
return;
if (N % 2 == 0)
collatz(N / 2);
else
collatz(3 * N + 1);

THE COULATZ CONTECTORE STATES THAT IF YOU
PICK A NUMBER, AND IF ITS EVEN DIVIDE 1T B
TWO AND |F IT5 0DD MULTIPLY IT BY THREE AND
ADD ONE, AND Yo REPEAT THIS PROCEDURE. LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WiLL SToP
CALUNG TO SEE IF YOU WANT TO HANG OUT.

16

Recursive graphics

I e I T e I I R
I I I e I I e R T

I e I e T I R
I I eI e I I R e T

size

H-tree

H-tree of order N
— Draw an H

— Recursively draw 4 H-trees
* One at each "tip" of the original H, half the size
* StoponceN=0

Eapal

T
—

19

Fibonacci Numbers

* 0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, ...

M T M
= O
1
Mm - O

n-1 + I:n-2

Natural fit for recursion?

public static long fib(long n)
{
if (n == 9)
return 0;
if (n == 1)
return 1;
return fib(n - 1) + fib(n -2);

}

20
30
40
41
42
43
44
45
46
47
48
49
50

Trouble in recursion city...

0.000
0.002
0.011
0.661
1.080
1.748
2.814
4.531
7.371
11.860
19.295
31.319
50.668
81.542

4/\

fib(3)

)

fib(2)

fib(2)

fib(1)

N\

fib(1)

fib(0)

Bad news bears.
Order of growth:
Exponential!

/T

fib(1) fib(0)

21

Efficient Fibonacci version

e Remember last two numbers
— Trade a (very) little amount of memory for a lot of time

0,11, 2,3,5, 8,13, 21, 34, 55, 89, 144, 233, 377

Efficient Fibonacci version

Remember last two numbers

— UseF, ,andF_,togetF,

0,

1, 1,

2,3,5,8,13, 21, 34,55, 89, 144, 233, 377

23

Efficient Fibonacci version

Remember last two numbers

— UseF, ,andF_,togetF,

OI 1)

1,2,

3,5,8,13, 21, 34, 55, 89, 144, 233, 377

24

Efficient Fibonacci version

Remember last two numbers
— UseF, ,andF_,togetF,

0,1,1/2,3)5, 8,13, 21, 34, 55, 89, 144, 233, 377

public static long fibFast(int n)
{
long n2
long nl
if (n == ©
return 0;
for (int i =
{
long n@ = nl + n2;
n2 nl;
nl no;
}

return nil;

0
1;
)

1; i < n; i++)

0.001

100 0.001

200 0.001

400 0.001
10,000,000 0.010
20,000,000 0.016
40,000,000 0.028
80,000,000 0.051

160,000,000 0.096

25

Summary

e Recursion

— A method calling itself
* Sometimes just once, e.g. binary search
* Sometimes multiple times, e.g. H-tree

— All good recursion must come to an end

* Sooner or later method must NOT call itself
recursively

— A powerful tool in computer science

* Allows writing elegant and easy to
understand algorithms

* (Once you get your head around it)

http://www.flickr.com/photos/zeusandhera/2496831822/

26

http://www.flickr.com/photos/zeusandhera/2496831822/

