
More recursion,
Divide and conquer

CSCI 136: Fundamentals of Computer Science II • Keith Vertanen • Copyright © 2011

Overview

2

• More recursion

– Recursion + randomness = pretty pictures

– Example 1: Brownian motion

– Example 2: Plasma cloud

• Divide and conquer

– Useful example of recursion

– Common computer science way to solve problems

– Example: Sorting

Brownian motion

• Physical process that models many natural and
artificial phenomenon

– Price of stocks

– Rugged shapes of mountains and clouds

– Fractal landscape and textures for computer graphics.

3

Simulating Brownian Motion

• Midpoint displacement method
– Track interval (x0, y0) to (x1, y1)

– Choose from d randomly from Gaussian distribution

– Divide in half, xm= (x0+x1)/2 and ym = (y0+y1)/2 + d

– Recur on the left and right intervals

4

Simulating Brownian Motion

• Midpoint displacement method
– Track interval (x0, y0) to (x1, y1)

– Choose from d randomly from Gaussian distribution

– Divide in half, xm= (x0+x1)/2 and ym = (y0+y1)/2 + d

– Recur on the left and right intervals

5

void curve(double x0, double y0, double x1, double y1, double var)
{
 if (x1 - x0 < .005)
 {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }
 double xm = (x0 + x1) / 2.0;
 double ym = (y0 + y1) / 2.0;
 ym = ym + StdRandom.gaussian(0, Math.sqrt(var));
 curve(x0, y0, xm, ym, var / 2.0);
 curve(xm, ym, x1, y1, var / 2.0);
}

Plasma cloud

• Same idea, but in 2D
– Each corner of square has some greyscale value

– Divide into four sub-squares

– New corners are: avg. of original corners, or all four + random

– Recur on four sub-squares

6

7

8

Brownian landscape

Divide and conquer

• Divide and conquer paradigm

– Break big problem into small sub-problems

– Solve sub-problems recursively

– Combine results

• Used to solve many important problems

– Mergesort, sorting things, O(N log N)

– Syntactic analysis, parsing programming languages

– Discrete FFT, signal processing

– Multiplying large numbers

– Traversing multiply linked structures (stay tuned)
• e.g. Visiting all the nodes in a tree or graph

 9

Divide and conquer: sorting

• Goal: Sort cards by number, ignore suit, aces high

10

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Unsorted pile #1 Unsorted pile #2

11

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

Merging
Take card from whichever pile has lowest card

12

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

13

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

14

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

15

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

16

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

17

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

18

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

19

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

20

Approach
1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

How many operations to do the merge?

Linear in the number of cards, O(N)

But how did pile 1 and 2 get sorted?

21

Unsorted #1 Unsorted #2

Unsorted #1a Unsorted #1b Unsorted #2a Unsorted #2b

Divide and conquer!
If somebody give you a pile of unsorted cards,
divide in half and give them to two other people

22

Unsorted #1 Unsorted #2

Unsorted #1a Unsorted #1b Unsorted #2a Unsorted #2b

Unsorted #2a-1 Unsorted #2a-2

Keep splitting until base case.
If given a single card,
give it back, it's sorted!

How many levels?

23

N = 9 cards

5 4

3 2 2 2

1 1 1 1 1 1 2 1

1 1

4 levels
requiring
merging of
two halves

log2(9) ≈ 3.17
2^3.17 ≈ 9

Order log2(N) levels, each level takes order N ops to merge
Mergesort: O(N log N)

Programming Activity

• Complete the MergeSort program

– Download MergeSort.java from website

– Step 1: Finish the sort method
• Assume you have a working merge method

– Step 2: Finish the merge method
• Given two sorted arrays, merge into a single sorted array

24

25

public static void sort(int [] nums)
{
 if (nums.length == 1)
 return;

 int mid = ?????;
 int [] d1 = new int[?????];
 int [] d2 = new int[?????];

 for (int i = 0; i < ?????; i++)
 {
 if (?????)
 d1[?????] = nums[i];
 else
 d2[?????] = nums[i];
 }

 ?????
 ?????;

 ?????;
}

Mergesort, sorting method

Base case, incoming
array is already sorted

Splitting incoming array
into two (mostly) equal
halves.

Merge the now sorted
half arrays.

Recur, asking each half
to be sorted.

Programming Activity

• Complete the MergeSort program

– Finish the body of merge method

– Assume:

 part1 and part2 are sorted
 part1.length + part2.length = result.length

26

public static void merge(int [] part1, int [] part2, int [] result)
{
 ...
}

1 3 5

2 3 8 9

27

public static void merge(int [] part1, int [] part2, int [] result)
{
 int index1 = 0;
 int index2 = 0;
 for (int k = 0; k < ?????; k++)
 {
 if (index1 == ?????)
 {
 result[k] = ?????
 index2++;
 }
 else if (index2 == ?????)
 {
 result[k] = ?????;
 index1++;
 }
 else if (?????)
 {
 result[k] = ?????;
 index1++;
 }
 else
 {
 result[k] = ?????;
 index2++;
 }
 }
}

Mergesort, merge method

Loop over the total
elements to merge

Handle case when
we've run out of data in
array part1

Handle case when
we've run out of data in
array part2

Part 1 currently has the
smallest one

Part 2 currently has the
smallest one

Summary

• More recursion

– Randomness and recursion = pretty pictures

• Divide-and-conquer

– If you don't know how solve the whole problem:
• Split it into parts

• Ask somebody to solve the parts

• Merge the parts together into a solution

– Mergesort
• Optimal sorting, O(N log N)

• Simple recursive divide-and-conquer algorithm

28

