

Overview S

 Multi-threaded programs

— Multiple simultaneous paths of execution
* Seemingly at once (single core)
* Actually at the same time (multiple cores)

* Concurrency issues
— The dark side of threading
— Unpredictability of thread scheduler can get you
— Protecting shared data using synchronized methods

* Deadlock
— The really dark side of threading

Programming activity

* Build a class that implements a worker thread
— Draw something in unit box
— Sleep
— Change something about the drawing
— Repeat forever
— Don't worry about erasing (don't call stdbraw.clear ())

* Email me your completed class

— I'll integrate into my ThreadZoo program

Trouble in concurrency city

 Ryan and Monica problem

— Two people (threads)

— Sharing data that exists in single bank account object
— Always check balance before withdrawing

— Only withdraw if enough fu

nds

class BankAccount ({
private int balance = 100; &«——— T\ att

balante
public int getBalance () {

return balance;

}

public void withdraw (int amount) {
balance = balance = amount;

}

ouml(, S{ar%,s with 3
of 1100

BankAccount

int balance

getBalance()
withdraw()

Runnable

RyanAndMonicaJob

BankAccount account

run()
makeWithdrawal()

Making the withdrawal

attount balante, and f there's not
mcssagc.l§ theve |S

ke up and (‘Or\w‘;'ld"C

Cheek the

cnough mor\c\/, we \)us{: ?\rm{: 5

‘ enough, we 90 to sleep, then wa

private void makeWithdrawal (int amount) { g)u5£ iy RYan .

if (account.getBalance() >= amount) {
System.out.println(Thread.currentThread() .getName() + “ is about to withdraw”) ;

try {
System.out.println(Thread.currentThread() .getName() + “ is going to sleep”);

Thread.sleep (500) ;
} catch(InterruptedException ex) {ex.printStackTrace(); }

System.out.println(Thread.currentThread() .getName() + “ woke up.”);

account.withdraw (amount) ;
System.out.println (Thread.currentThread() .getName() + “ completes the withdrawal”);

}
else {

System.out.println(“Sorry, not enough for “ + Thread.currentThread() .getName())
}
We put in 5 bunch of print

} f 5{;8{: ™m
see what's haPPCmnS asiibx ements so we £an

uns

Firing up Ryan and Monica

\| be On\\f ONE nstante og the

N
£a)do. That mears &
i Cazo{:\\c bank aCCounf Both

£ss +his ont attouwn

There W
public class RyanAndMonicaJob implements Runnable ({ Rja\"h"dMo

ONE instance ©

private BankAccount account = new BankAccount() ; &/ Ehred ds will act

public static void main (String [] args) {
RyanAndMonicaJob theJob = new RyanAndMonicaJdob() ; (__ bis {an ¢
Thread one = new Thread (theJdob) ;
Thread two = new Thread (theJob) ; &— Make two
one.setName (“Ryan”) ; Job That
two.setName (“Monica”) ;

hreads)|
one.start() ; tance variable iy, fhew;‘g be acc“s"‘ﬂ the one
two.start() ; unnable ¢)aqs
}
{')\Y‘OM h and tX\CS
public void run() { In the cun() method) 3 thread \oogs e SAQJLCY the
for (int x = 0; x < 10; x++) { :p ske 3 withdrawal with eath er 5in 4o see W
makeWithdrawal (10) ; s , balante onte 3%a'"
if (account.getBalance() < 0) { withdvawal, it thecks the

N
System.out.println(“Overdrawn!”); |y attount s ovexdraw

}

Locks

* Only one person in makeWithdrawal at a time!

— Tell Java this using synchronized keyword

private synchronized void makeWithdrawal (int amount) {

if (account.getBalance () >= amount) {
System.out.println (Thread.currentThread() .getName () + ™ is about to withdraw”);
try {
System.out.println (Thread.currentThread() .getName() + ™ is going to sleep”);
Thread.sleep (500) ;

} ecatch (InterruptedException ex) {ex.printStackTrace(); }
System.out.println (Thread.currentThread() .getName () + " woke up.”);
account.withdraw (amount) ;

System.out.println(Thread.currentThread() .getName () + " completes the withdrawl”);
} else {

System.out.println(™Sorry, not enough for ™ + Thread.currentThread() .getName()) ;

The synchronized
keyword means that
a thread needs a key
in order to access the
synchronized code.

Lost update problem

class TestSync implements Runnable ({

private int balance; .60 LimeS)
: : eath U‘(C?d Yg\c balante ©

P o (it 4 =) 4 < 803wy i € WOPTIL,
increment () ; ’ , Cad\ i
System.out.println(“balance is “ + balance);

}
}

public void increment() {
int i = balance;)
balance = i + 1; Here’s the Erutia

} addins | '&O Whaf
} TIME WE READ /
{ZHC cuRRENTV&lu

ent the balanee b)’

balanee was AT THE

TG
rathey than adding | $o wWhatey
ev

e is)
public class TestSyncTest {
public static void main (String[] args) {

TestSync job = new TestSync() ;

Thread a = new Thread(job) ;

Thread b = new Thread(job) ;

a.start () ;

b.start();

 Deadlock

— Causes program to stop doing anything useful

Deadlock

te

— All you need is two objects and two threads

N D

Thread A enters a
synchronized method
of object foo, and gets

the key. ?

Thread A goes to
</ sleep, holding the
foo key.

1®

Thread B enters a
synchronized method
of object bar, and gets

the key. ?

l Thread B tries to enter

@ &

a synchronized method
A of object foo, but can't
. get that key (because
Ahas it). B goes to
the waiting lounge, until
the foo key is available.
B keeps the bar key.

® A

:

Thread A wakes up (still
holding the foo key)

and tries to enter a
synchronized method on

" object bar, but can't get

that key because B has
it. A goes to the waiting
lounge, until the bar key is
available (it never will bel)

Thread A can’t run until
it can get the bar key,
but B is holding the bar
key and B can'’t run until it
gets the foo key that Ais
holding and...

Programming activity

* Goal: Program that increments/decrements all the
Integers in an array

— Create class NumHolder that holds array of 100 integers

 Create increment () and decrement () methods
— Methods go through all 100 integers and ++ or —them

e Create run() method

— Randomly call increment () and decrement () 1000 times

— Create main program in NumHolderLaunch
* Create a single NumHolder object

Create two threads

Print out NumHolder object

Start threads, wait for them to finish

Print out NumHolder again

10

