
CSCI 136: Fundamentals of Computer Science II
Spring 2012

Course Objective
 A continuation of CSCI 135, this class explores the finer and more subtle elements of

programming. Students will implement an industrial size project. Programming techniques
and structures will include recursion, arrays, records, sets and linked lists. Prerequisite: CSCI
135.

Instructor
 Keith Vertanen
 kvertanen@mtech.edu
 Museum 102, 496-4385
 Office hours: Mon 3:00 – 4:00pm
 Wed 2:00 – 3:00pm
 Fri 3:30 – 4:30pm
 or by appointment
Classes
 Mon 11:00 - 11:50am Lecture ENG 208
 Wed 03:00 - 05:50pm Lab Main 205
 Fri 11:00 - 11:50am Lecture ENG 208

Resources
 Textbook Head First Java 2nd edition by Kathy Sierra & Bert Bates
 Class web page http://katie.mtech.edu/classes/csci136/

Moodle https://moodlemtech.mrooms3.net/course/view.php?idnumber=34606

Evaluation
 A 90% - 100% Exam 1 15%
 B 80% - 89% Exam 2 15%
 C 70% - 59% Exam 3 15%
 D 60% - 69% Programming assignments 55%
 F 0% - 59% Staff discretion (participation and extra-credit) ±?%

Assignment submission. All assignments need to be submitted via Moodle. You should upload
all the source files required by the assignment. You should also include any other source files
which your programs depend on (things not in the standard Java library). The top of every
source file should include your name, username, and a description of what the class does.

Assignment deadline and late policy. All assignments are due at 10PM on the stated date.
There is a two-hour grace period. Assignments arriving after 11:59PM are late. You get a total
of four free late days. Each late day buys you a 24-hour extension to a submission deadline. If

mailto:kvertanen@mtech.edu
http://katie.mtech.edu/classes/csci136/
https://moodlemtech.mrooms3.net/course/view.php?idnumber=34606

you are out of free late days, any further late submissions will be given a zero. Late days are on
a per student basis (i.e. only students with sufficient late days get credit for a late group
assignment). Weekends and holiday count as late days.

Assignment grading. Your code will be graded on correctness, programming style (including
comments), and efficiency. Partial credit is possible so if you run out of time, submit what you
have. If you want to do well, start well in advance of the deadline. This allows time to seek help
if you run into trouble. Software bugs can be difficult to find and are often easily found after a
good night's sleep.

Exams. There will be three exams that cover material from lectures, labs, and assignments.
Makeup tests will only be given if you bring valid documentation explaining a legitimate reason
for missing the test. Exams will occur during our scheduled lab period.

Academic dishonesty
Cheating will not be tolerated and can result in failure in the course. Submitted work must be
your own (except for designated group assignments). Under no circumstances should you copy
another person's solution or code. A student providing code to another student is considered as
guilty as the student copying it (faculty handbook 308.4). Exams are to be strictly your own
effort. Unless otherwise specified, no electronic devices are allowed in exams.

Programming is a creative process and no two programmers will solve the same problem in the
same way. You are encouraged to discuss how to design a solution to a given problem with your
classmates. But when it comes time to convert your design into code, you must write the code
yourself. Be sure not to leave copies of your code where others might be able to access it (such
as in the recycling bin of a lab computer). You may adapt code from the course materials
provided you cite what code you used in your program's comments.

General
Any student who may need an accommodation due to a disability, please make an appointment
to see me during my office hours. A letter from a Montana Tech Disability Coordinator
authorizing your accommodations is needed.

Expectations
E1. Students should have basic problem solving skills and be able to apply those skills to create
an algorithmic solution for a given programming problem. (CSCI 135)

E2. Students should be able to create programs using assignments, control constructs, and
routines and be able to find and correct any syntax errors to produce a running executable.
(CSCI 135)

E3. Students should be able to test their programs, find any logic errors, and correct these flaws
to produce a working program. (CSCI 135)

Course Outcomes
R1. Students are proficient in a programming language and know basic error-handling, testing and

debugging techniques. (CAC-c, i, j, k; EAC-k)

R2. Students use advanced programming techniques, including recursion, file I/O, abstraction, multi-file

programs, and programming language libraries. (CAC-c, i, j, k; EAC-k)

R3. Students use and implement simple data structures, including stacks, queues, arrays, and linked lists.

(CAC-c, i, j, k; EAC-k)

R4. Students use basic object-oriented programming methodologies including object-oriented problem

decomposition, class design/implementation, and object creation/usage. (CAC-b, c, i, j, k; EAC-c, k)

R5. Students write defensive programs using an integrated design language and coding standard and

basic error detection and reporting techniques with an emphasis on the responsibilities that computer

professionals have for ensuring software quality. (CAC-b, c, i, j, k; EAC-c, k)

R6. Students understand and implement multi-threaded solutions to achieve provably correct

synchronization among threads operating on shared resources. (CAC-c, i, j; EAC-k)

R7. Students integrate third party applications into their projects through socket

connection/communications protocol, method API's, and command line interfaces. (CAC-c, i, j; EAC-k)

R8. Students implement client-server architectures which communicate over the Web using TCP and the

sockets interface. (CAC-c, i, j; EAC-k)

