Sampling Examples

0.249 0.052 0.299 0.773 0.715 0.550 0.703 0.105 0.236 0.153

A	P(A)
0	0.200
1	0.800

•	A	P(B A)
	0	0.400
	0	0.600
	1	0.200
	1	0.800

D	B	P(D B)
0	0	0.800
1	0	0.200
0	1	0.600
1	1	0.400

P(C|B)

0.600

E	C	D	P(E C,D)
0	0	0	0.200
1	0	0	0.800
0	1	0	0.600
1	1	0	0.400
0	0	1	0.800
1	0	1	0.200
0	1	1	0.800
1	1	1	0.200

What are:

A:

B:

C:

D:

E:

What is the weight for the sample above?

In this question, we will perform likelihood weighting to estimate $P(C=1 \mid B=1, E=1)$.

Below are a set of weighted samples obtained by running likelihood weighting for the Bayes' net from the previous question. Use them to estimate $P(C=1\mid B=1,E=1)$. Input -1 in the box below if the estimation cannot be made.

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
0 1 A x B x C x D x E x	0 1 A X B X C X D X E X	0 1 A X B X C X D X E X	0 1 A x B x C x D x E x	0 1 A x B x C x D x E x
Weight = 0.64	Weight = 0.64	Weight = 0.32	Weight = 0.16	Weight = 0.48

Estimation:

Enter your answer here

P(A)		
-a	3/4	
+a	1/4	

P(B A)			
-a	-b	2/3	
-a	+b	1/3	
+a	-b	4/5	
+a	+b	1/5	

1	P(C B)			
-b	-c	1/4		
-b	+c	3/4		
+b	-c	1/2		
+b	+c	1/2		

P(D C)			
-c	-d	1/8	
-c	+d	7/8	
+c	-d	5/6	
+c	+d	1/6	

(a) You are given the following samples:

- (i) Assume that these samples came from performing Prior Sampling, and calculate the sample estimate of P(+c).
- (ii) Now we will estimate $P(+c \mid +a, -d)$. Above, clearly cross out the samples that would **not** be used when doing Rejection Sampling for this task, and write down the sample estimate of $P(+c \mid +a, -d)$ below.

(b) Using Likelihood Weighting Sampling to estimate $P(-a \mid +b, -d)$, the following samples were obtained. Fill in the weight of each sample in the corresponding row.

San	ple			\mathbf{Weight}
-a	+b	+c	-d	
+a	+b	+c	-d	
+a	+b	-c	-d	
-a	+b	-c	-d	

(c) From the weighted samples in the previous question, estimate $P(-a \mid +b, -d)$.

(e) Recall that during Gibbs Sampling, samples are generated through an iterative process.

Assume that the only evidence that is available is A = +a. Clearly fill in the circle(s) of the sequence(s) below that could have been generated by Gibbs Sampling.

Sequence	1
----------	---

1:	+a	-b	-c	+d
9.	\perp_{α}	-b	_ 0	$\perp d$

$$3: \begin{vmatrix} +a & -b & +c & +d \end{vmatrix}$$

Sequence 3

$$1: \begin{vmatrix} +a & -b & -c & +d \\ 2: \begin{vmatrix} +a & -b & -c & -d \end{vmatrix}$$

$$3: \begin{vmatrix} +a & +b & -c & -d \end{vmatrix}$$

Sequence 2

$$1: \begin{vmatrix} +a & -b & -c & +d \end{vmatrix}$$

$$2: \mid +a -b -c -a$$

$$3: \begin{vmatrix} -a & -b & -c & +d \end{vmatrix}$$

Sequence 4

$$1: \begin{vmatrix} +a & -b & -c & +d \end{vmatrix}$$

$$2: \mid +a -b -c -d$$

$$3: \mid +a +b -c +d$$