Sampling Examples

A	$P(A)$					
0	0.200					
1	0.800					
0	A	$P(B \mid A)$				
1	0	0.400				
	0	0.600				
0	1	0.200				
1	1	0.800	\quad	C	B	$P(C \mid B)$
:---	:---	:---				
0	0	0.600				
1	0	0.400				
0	1	0.600				
1	1	0.400	\quad	D	B	$P(D \mid B)$
:---	:---	:---				
0	0	0.800				
1	0	0.200				
0	1	0.600				
1	1	0.400				

E	C	D	$P(E \mid C, D)$
0	0	0	0.200
1	0	0	0.800
0	1	0	0.600
1	1	0	0.400
0	0	1	0.800
1	0	1	0.200
0	1	1	0.800
1	1	1	0.200

What are:

A:
B:
C:

D:
E:
What is the weight for the sample above?

In this question, we will perform likelihood weighting to estimate $P(C=1 \mid B=1, E=1)$.

Below are a set of weighted samples obtained by running likelihood weighting for the Bayes' net from the previous question. Use them to estimate $P(C=1 \mid B=1, E=1)$. Input -1 in the box below if the estimation cannot be made.

Estimation:

Enter your answer here

(a) You are given the following samples:

$$
\begin{array}{llllllll}
+a & +b & -c & -d & +a & -b & -c & +d \\
+a & -b & +c & -d & +a & +b & +c & -d \\
-a & +b & +c & -d & -a & +b & -c & +d \\
-a & -b & +c & -d & -a & -b & +c & -d
\end{array}
$$

(i) Assume that these samples came from performing Prior Sampling, and calculate the sample estimate of $P(+c)$.
(ii) Now we will estimate $P(+c \mid+a,-d)$. Above, clearly cross out the samples that would not be used when doing Rejection Sampling for this task, and write down the sample estimate of $P(+c \mid+a,-d)$ below.
(b) Using Likelihood Weighting Sampling to estimate $P(-a \mid+b,-d)$, the following samples were obtained. Fill in the weight of each sample in the corresponding row.

$$
\left.\begin{array}{llll}
\text { Sample } & & & \text { Weight } \\
-a & +b & +c & -d
\end{array}\right) \square
$$

(c) From the weighted samples in the previous question, estimate $P(-a \mid+b,-d)$.
(e) Recall that during Gibbs Sampling, samples are generated through an iterative process.

Assume that the only evidence that is available is $A=+a$. Clearly fill in the circle(s) of the sequence(s) below that could have been generated by Gibbs Sampling.

Sequence 1

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$+d$
$3:$	$+a$	$-b$	$+c$	$+d$

Sequence 3

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$-d$
$3:$	$+a$	$+b$	$-c$	$-d$

Sequence 2

$1:$	$+a$	$-b$	$-c$	$+d$
$2:$	$+a$	$-b$	$-c$	$-d$
$3:$	$-a$	$-b$	$-c$	$+d$

Sequence 4

$$
\begin{array}{l|llll}
\hline 1: & +a & -b & -c & +d \\
2: & +a & -b & -c & -d \\
3: & +a & +b & -c & +d
\end{array}
$$

