
CSCI 446: Artificial Intelligence

Constraint Satisfaction Problems II

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

 Efficient Solution of CSPs

 Local Search

Reminder: CSPs

 CSPs:
 Variables
 Domains
 Constraints

 Implicit (provide code to compute)
 Explicit (provide a list of the legal tuples)
 Unary / Binary / N-ary

 Goals:
 Here: find any solution
 Also: find all, find best, etc.

Backtracking Search

Improving Backtracking

 General-purpose ideas give huge gains in speed

 … but it’s all still NP-hard

 Filtering: Can we detect inevitable failure early?

 Ordering:

 Which variable should be assigned next? (MRV)

 In what order should its values be tried? (LCV)

 Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency of an Entire CSP

 A simple form of propagation makes sure all arcs are simultaneously consistent:

 Arc consistency detects failure earlier than forward checking
 Important: If X loses a value, neighbors of X need to be rechecked!
 Must rerun after each assignment!

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Limitations of Arc Consistency

 After enforcing arc
consistency:

 Can have one solution left

 Can have multiple solutions left

 Can have no solutions left (and
not know it)

 Arc consistency still runs
inside a backtracking search!

What went
wrong here?

K-Consistency

K-Consistency

 Increasing degrees of consistency

 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

 K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

 Higher k more expensive to compute

 (You need to know the k=2 case: arc consistency)

Strong K-Consistency

 Strong k-consistency: also k-1, k-2, … 1 consistent

 Claim: strong n-consistency means we can solve without backtracking!

 Why?
 Choose any assignment to any variable

 Choose a new variable

 By 2-consistency, there is a choice consistent with the first

 Choose a new variable

 By 3-consistency, there is a choice consistent with the first 2

 …

 Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

 Extreme case: independent subproblems
 Example: Tasmania and mainland do not interact

 Independent subproblems are identifiable as
connected components of constraint graph

 Suppose a graph of n variables can be broken into
subproblems of only c variables:
 Worst-case solution cost is O((n/c)(dc)), linear in n
 E.g., n = 80, d = 2, c =20
 280 = 4 billion years at 10 million nodes/sec
 (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2) (why?)

Tree-Structured CSPs

 Claim 1: After backward pass, all root-to-leaf arcs are consistent
 Proof: Each XY was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

 Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 Proof: Induction on position

 Why doesn’t this algorithm work with cycles in the constraint graph?

 Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains

 Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

 Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

 Find the smallest cutset for the graph below.

Tree Decomposition*

 Idea: create a tree-structured graph of mega-variables

 Each mega-variable encodes part of the original CSP

 Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),

(WA=b,SA=r,NT=g),

…}

{(NT=r,SA=g,Q=b),

(NT=b,SA=g,Q=r),

…}

Agree: (M1,M2)

{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
g
re

e
 o

n
 s

h
a

re
d

 v
a

rs

NT

SA

WA

Q

SA

NT

A
g
re

e
 o

n
 s

h
a

re
d

 v
a

rs

NS

W

SA

Q

A
g
re

e
 o

n
 s

h
a

re
d

 v
a

rs

V

SA

NS

W

Iterative Improvement

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe! Live on the edge.

 Algorithm: While not solved,
 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

 The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

 CSPs are a special kind of search problem:
 States are partial assignments
 Goal test defined by constraints

 Basic solution: backtracking search

 Speed-ups:
 Ordering

 Filtering

 Structure

 Iterative min-conflicts is often effective in practice

Local Search

Local Search

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve a single option until you can’t make it better (no fringe!)

 New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

 Simple, general idea:
 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s bad about this approach?
 Complete?

 Optimal?

 What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

 Idea: Escape local maxima by allowing downhill moves
 But make them rarer as time goes on

32

Simulated Annealing

 Theoretical guarantee:
 Stationary distribution:

 If T decreased slowly enough,
will converge to optimal state!

 Is this an interesting guarantee?

 Sounds like magic, but reality is reality:
 The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a
row

 People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor
 Keep best N hypotheses at each step (selection) based on a fitness function

 Also have pairwise crossover operators, with optional mutation to give variety

 Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

 Why does crossover make sense here?

 When wouldn’t it make sense?

 What would mutation be?

 What would a good fitness function be?

Today

 Efficient Solution of CSPs

 Local Search

