
EXAM 2

REVIEW 2

Question 1

• What are the five steps in the Software Development Life

Cycle?

CSCI 135 - Fundamentals of Computer Science I 2

Question 1

• What are the five steps in the Software Development Life

Cycle?

1. Understand the problem – specification / analysis

2. Work out the logic – design

3. Write code – implementation

4. Make sure it works – test/debug

5. Maintenance

CSCI 135 - Fundamentals of Computer Science I 3

• Given the following accessor, is this valid? Why or why
not?

class Balloon:

def __init__(self, color, radius):

color must be a valid RGB color
self.color = color

radius must be between 0 and 12 inclusive
self.radius = radius

def getRadius(self):

if self.radius <= 12 and self.radius >= 0:

return self.radius

return 0

Question 2

CSCI 135 - Fundamentals of Computer Science I 4

• Given the following accessor, is this valid? Why or why
not?

def getRadius(self):

if self.radius <= 12 and self.radius >= 0:

return self.radius

return 0

Yes, it’s valid. If the “if” condition tests true, the
“return 0” is never reached. If it is not true, the
accessor will return the value 0.

It probably should return the max value (12) if
self.radius contains a number greater than 12.

Question 2

CSCI 135 - Fundamentals of Computer Science I 5

Question 3

CSCI 135 - Fundamentals of Computer Science I 6

• What prints out when this code is executed?:
def mystery(x):

if x % 2 == 1:
if x**3 != 27:

x = x + 4
else:

x = x / 1.5
else:

if x <= 10:
x = x * 2

else:
x = x - 2

return x

x = 8
print(mystery(x))
print(x)
x = 5
print(mystery(x))
print(x)

Question 3

CSCI 135 - Fundamentals of Computer Science I 7

• What prints out when this code is executed?:
def mystery(x):

if x % 2 == 1:
if x**3 != 27:

x = x + 4
else:

x = x / 1.5
else:

if x <= 10:
x = x * 2

else:
x = x - 2

return x

x = 8
print(mystery(x))
print(x)
x = 5
print(mystery(x))
print(x)

16

8

9

5

Question 4

CSCI 135 - Fundamentals of Computer Science I 8

• Consider the following two implementations of this function:

def audioReverse(audio):

if len(audio) <= 0:

return []

return audio.reverse()

def audioReverse(audio):

try:

list(reversed(audio))

except:

return []

• Which one is better coding style? Why?

Question 4

CSCI 135 - Fundamentals of Computer Science I 9

• Consider the following two implementations of this function:

def audioReverse(audio):
if len(audio) <= 0:

return []
return audio.reverse()

def audioReverse(audio):
try:

list(reversed(audio))
except:

return []

• Which one is better coding style? Why?

• If you anticipate that unknown data types may be sent to this function,
you may want to use the second one, since a simple if statement may not
catch that. If you are only concerned with the length of the list passed in
being greater than 0, it is better to use the first approach. (Principle is, if
you can catch an error using logic, do that, rather than using exceptions.)

Question 5

CSCI 135 - Fundamentals of Computer Science I 10

• What are five types of methods you should seriously

consider including when you create a class?

Question 5

CSCI 135 - Fundamentals of Computer Science I 11

• What are five types of methods you should seriously consider
including when you create a class?

• Constructor

• Accessors

• Mutators

• equals()

• toString()

• (and then any other behaviors your class needs to have)

Question 6

CSCI 135 - Fundamentals of Computer Science I 12

• What is the point of having an API (Application

Programming Interface)?

Question 6

CSCI 135 - Fundamentals of Computer Science I 13

• What is the point of having an API (Application Programming
Interface)?

Encapsulation! You want to separate the code using your
objects from the code implementing object behavior as much
as possible. You also want to protect any data associated with
your objects from being directly accessed and possibly
improperly used or changed, so you want to provide methods
that can check that data is valid before changing attribute
values.

Question 7

• What does the “self” keyword refer to in a class?

• What does “super()” refer to?

CSCI 135 - Fundamentals of Computer Science I 14

Question 7

• What does the “self” keyword refer to in a class?

• The particular instance that is using that data and code. “Self”

means the current instance, not the general class, or blueprint.

• What does “super()” refer to?

• My parent. If I invoke super().<something> I am asking to use the

data or method of my parent.

CSCI 135 - Fundamentals of Computer Science I 15

CSCI 135 - Fundamentals of Computer Science I 16

