
Problem Decomposition Revisited
(Again and Again…):

Object Oriented Design

Fundamentals of Computer Science

zombie[0]

zombie[2]
zombie[5]

zombie[1]
zombie[3]

zombie[4]

There’s more…?

Outline

 Object Oriented Design: Now that we know the
classes

 Design the methods

Software Development Life Cycle

3

1. Understand the Problem = Requirements
Analysis

2. Work out the Logic = Design

3. Convert it to Code = Implementation

4. Test/Debug

5. Maintenance

Today we will start to analyze and design
the solution to a program.

The Problem – For Reference

 The Game. The Wumpus World game takes place in a cave with different rooms in it. You can think of the
cave as an NxM rectangular grid. The player always starts in position 0,0, which is guaranteed to be safe
(but it may still be smelly or breezy or glittery).

The objective of the game is to find the gold. The player will know when he/she is in a room with the gold
because there will be a "glitter" in that room. If the player detects a glitter, he/she can pick up the gold and
the game is won.

Bottomless pits are present in some of the rooms. There is a 20% chance that any given room will have a
pit. All rooms adjacent to a pit are breezy, that is, a player entering a room adjacent to a pit will detect a
breeze. If the player moves into the room with a pit, he/she falls in and dies a horrible death.

There is only one wumpus in the cave, and he is also placed at random. Rooms adjacent to the wumpus are
smelly, that is, a player will detect a stench in a room adjacent to a wumpus. The wumpus cannot move. If
the player enters a room with the wumpus, he/she will be eaten, and, once again, die a horrible death.

There is also only one room in the cave that contains the gold. Unlike the other objects, the player has to be
in the same room as the gold in order to detect a glitter. Like the wumpus, the gold is placed at random.

The player can move up, down, left, or right. The player also has one arrow. Once it's used up, it's gone. It
can be used to shoot a wumpus, and can be shot in any direction the player can move in. If the player is
successful in shooting the wumpus, the wumpus will emit a blood-curdling scream, and will no longer be a
threat. The only other action the player can perform is to "grab gold".

When the player first starts the game, he/she does not know (and cannot see) where the location of pits,
gold and the wumpus are. The only clues are whether the current room is breezy, smelly, or glittery.

4

Class API’s

7

Class: Returns Method Parameters Description

Room __init__ Construct a room

setCondition condition, value Set the condition of a room (e.g. breexy, has a Wumpus,
etc.)

boolean value getCondition condition Returns the value of a room condition

draw image size, x, y Draws the room image with contents at the size and x, y
location

Cave __init__ width, height Constructs an NxM cave and adds all objects (pits,
breezes, etc.)

draw Draws the cave with all its rooms

Player __init__ Constructs a player

int x getX Returns the x location of the player

int y getY Returns the y location of the player

boolean getArrow Returns whether the player has an arrow left or not

boolean move height, width,
direction

Changes players location and returns True if successful,
False otherwise

shootArrow Removes the arrow from inventory

draw Draws the player at his/her current location

Recap: Important Methods to Have

 Constructor

 Accessors (Getters)

 Mutators (Setters)

 Equals

 toString

8

Summary

 Object Oriented Design

 Identify the classes

 Identify what information each class needs

 Identify what each class needs to do

 Identify use cases

 Define the API

 Define the instance variables

 Finally – write some code!

